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Introduction

Our goal is, broadly speaking, to study Diophantine Equations. They are,
in a sense, simple questions about the most fundamental mathematical ob-
jects: integer numbers, with their natural operations (addition and multipli-
cation). This means that we are given a polynomial with integer coefficients
F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] and we want to study the set of solutions of

F (x1, . . . , xn) = 0 in x1, . . . , xn ∈ Z.

This kind of problem is so simple in its formulation that it has been consid-
ered at least since the III century A.D., by Diophantus of Alexandria (hence the
name “Diophantine”).

However, as often happens in Mathematics in general, and in Number The-
ory in particular, a simple question doesn’t necessarily have a simple answer. A
famous example is “Fermat’s Last Theorem”, that should now be referred to as
Wiles’ Theorem.

Theorem 0.1. Let n ≥ 3 be an integer. The equation

xn + yn = zn in x, y, z ∈ Z>0

has no solution.

The Theorem was conjectured by Fermat in 1637, but the first correct proof
was given by Wiles in 1994, after three and a half centuries of effort by mathe-
maticians. In his proof, Wiles uses advanced geometric techniques.

To see how geometry can come into play, consider the following example.
Assume we want to compute Pythagorean triples, that is positive integer solu-
tions (a, b, c) to the equation

a2 + b2 = c2.

Since the equation is homogeneous, we have that if (a, b, c) is a solution, then
for any λ ∈ Z>0 also (λa, λb, λc) is a solution. Vice versa, if a, b and c have a
common factor d, we can divide them by d to get another solution. We con-
clude that we can restrict our attention to coprime solutions, that is such that
gcd(a, b, c) = 1. These are also called primitive Pythagorean triples.

Now we can divide by c and look for rational solutions (x, z) =
(
a
c
, b
c

)
of the

equation

x2 + z2 = 1.
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This equation defines a circle in the Cartesian plane, and we can use the
stereographic projection from N = (0, 1) to parametrize its rational points, that
is points with rational coordinates.

That is, if P ′ =
(
m
n
, 0
)

for some coprime integers m,n, the image of P ′ is

P =

(
2mn

m2 + n2
,
m2 − n2

m2 + n2

)
so every rational point on the unit circle can be written in this form for some

pair of coprime integers (m,n).
Let a = 2mn, b = m2 − n2 and c = m2 + n2, so that a2 + b2 = c2. It can be seen

that gcd(a, b, c) = 1 if and only ifm and n are coprime and not both odd, and that
up to swapping a and b all primitive triples can be obtained in this way.

This gives what is known as Euler’s formula: all primitive Pythagorean triples
(a, b, c) are of the form

a = 2mn b = m2 − n2 c = m2 + n2

for some pair of distinct coprime integers (m,n), not both odd.
The circle in the Cartesian plane is an example of algebraic variety, a geo-

metric object defined by a polynomial equation. Given this geometric object,
what we are interested in is the set of its rational points, which are the solutions
to the equation we started with.

With this connection between Geometry and Arithmetic in mind, we are go-
ing to use geometric techniques to study the set of solutions of Diophantine
equations. More precisely, we will be concerned with the study of projective
quadric surfaces, that are two-dimensional varieties defined by a single homo-
geneous polynomial equation of degree two.
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The first four chapters are devoted to the prerequisites; we will cite most of
the results without giving proofs. After a first chapter of geometric background,
we are going to introduce Hasse’s local-global principle in Chapter 2, which will
be our guiding principle. In Chapters 3 and 4 we develop the theory necessary
to define the Brauer group and the Brauer-Manin obstruction.

In the last chapter, the only one containing some original work, we approach
the main topic of this thesis. Given a projective quadric surface Y defined over
a number field K, we study the integral points of the punctured affine cone X
over Y . IfK = Q, this is equivalent to studying coprime integer solutions to a de-
gree two equation in four variables. More precisely, we describe, under certain
hypotheses, a Brauer-Manin obstruction to Strong Approximation away from
infinity on X. In some cases, this explains why some local solutions (for exam-
ple, solutions modulo a prime p) do not lift to coprime integer solutions.
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Notation and Conventions

We collect here some notational conventions and definitions that we will use
throught the text. Most of them are standard, some are specified to avoid con-
fusion.

Set Theory and Categorical Notation

The inclusion symbol “⊂” will always mean “contained in or equal to”.
We denote the cardinality of a set X by #X. We will generally avoid talking

about the cardinality of infinite sets.
Set difference is denoted by “\”, that is if X is a set and A,B ⊂ X are two

subsets, we define A \B := {x ∈ A |x 6∈ B}.
If I is a (possibly infinite) set and X = {Xi | i ∈ I} is a family of sets indexed

by I, an element of the product P =
∏

i∈I Xi will be denoted by (xi)i∈I , or by (xi).
Given a subset Ui ⊂ Xi for every i ∈ I, we denote by

∏̂
i∈I

(Xi, Ui) =

{
(xi) ∈

∏
i∈I

Xi |xi ∈ Ui for all but finitely many i ∈ I

}

the restricted product of the Xi with respect to the Ui. See [5], Section II.13.

Let C be a category. IfA andB are two objects of C, we denote by Hom(A,B)
the set (or class) of morphisms from A to B. We will use the notation End(A) for
Hom(A,A) and Aut(A) for the set (or class) of isomophisms from A to A. If the
latter is a set, it will be considered a group via composition of morphisms. The
identity map A→ A will be denoted by idA.

If C is the category of schemes, S is a scheme and A and B are S-schemes,
HomS(A,B) will denote the set of morphisms of S-schemes from A to B, that is
morphisms in the slice catgeory C/S.

If C is the category of rings, R is a commutative ring and A and B are R-
algebras (see below), HomR(A,B) will denote the set of morphisms ofR-algebras
from A to B, that is morphisms in the coslice category R\C.

Groups

If G is a group and H a subgroup we will denote by [G : H] the index of H in
G, that is the cardinality of the coset set G/H.
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If G is a group and n ∈ N>0, we will denote by G[n] the n-torsion part {g ∈
G | gn = 1} of G. If G is abelian, G[n] is a subgroup. A group G will be called
torsion if every element has finite order, that is if G =

⋃
n∈N>0

G[n].
If S is a set, we will denote by 〈S〉 the free group on S. If S = {x1, . . . , xn} is

finite, we let 〈x1, . . . , xn〉 := 〈S〉. For example, 〈x〉 will denote the infinite cyclic
group generated by x.

Rings

By ring we will always mean a ring with unit, and we will assume that mor-
phism of rings preserve the unit. We will not assume that rings are commutative.

If A is a ring and B ⊂ A is any subset, we will denote by C(B) its centralizer,
that is C(B) = {c ∈ A | cb = bc ∀b ∈ B}. The centralizer C(A) of A itself is called
the centre of A and will be denoted by Z(A).

If A is a commutative ring, an A-algebra is a (not necessarily commutative)
ring B equipped with a map ϕ : A→ B such that ϕ(A) ⊂ Z(B).

The set of units (that is, invertible elements) of a ring A will be denoted by
A×. It will be considered a group via the multiplication of A. Notice that in
general A× is smaller than A \ {0}.

A division ring, also called skew field, is a (not necessarily commutative) ring
D such that every non-zero element has a multiplicative inverse, that is such
that D× = D \ {0}. A field is a commutative division ring.

IfA is any ring, we denote byAop the ring that has the same additive structure
and multiplication reversed. That is, if A = (A,+, ·) then Aop = (A,+, ∗), where

∗ : A× A→ A

(a, b) 7→ a ∗ b := b · a.

By local ring we mean a commutative ring that has a unique maximal ideal.
If A is a commutative ring and P a prime ideal, we denote by RP the localiza-
tion of R at P . If A is a local ring with maximal ideal m, we denote by Âm the
completion of A, i.e Âm = lim←−iA/m

i.

Linear Algebra

Let R be a ring. The set of m × n matrices will be denoted by Mm,n(R). This
set has a natural structure of R-module and if m = n it is a ring with the usual
matrix multiplication. We let Mn(R) := Mn,n(R).

The transpose of a matrix M will be denoted by MT . The determinant of a
square matrix M will be denoted by detM . The n × n identity matrix will be
denoted by Idn, or just Id if there is no risk of confusion.
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Fields and Galois Theory

Let k be a field. If V is a k-vector space, dimk V will denote its dimension (also
called rank). If A is a k-algebra, we let [A : k] = dimk A as a k-vector space.

A field extension L of k will be denoted by L | k. If L | k is Galois (that is,
normal and separable), we let Gal(L | k) := Autk(L) denote the Galois group of
L | k. IfL | k is infinite, this will be considered a topological group with its natural
(Krull) topology (see [5], Chapter V). The extension L | k is called abelian if its
Galois group Gal(L | k) is abelian; it is called cyclic if Gal(L | k) is cyclic.

The norm and trace maps will be denoted by NL | k : L× → k× and TrL | k :
L→ k respectively.

We will denote a fixed algebraic closure of k by k and a fixed separable closure
by ksep. The extension ksep | k is Galois and the Galois group Gal(ksep | k) is called
the absolute Galois group of k.

Number Fields

We will usually denote number fields by uppercase Latin letters, often K or
L.

Let K be a number field. The ring of integers of K will be denoted by OK , or
just byO if there is no risk of confusion.

The set of all normalized valuations of K ([5], §7 and §11) will be denoted
by ΩK and the subset of non-Archimedean valuations by Ω∞K . Valuations will
be usually denoted by the letter v, or similar, but we will use |x|v to denote the
valuation of x ∈ K.

If v ∈ Ω∞K , we denote by Kv and OK,v (or Ov) the completions of K and its
number ring with respect to v. Recall thatOv = {x ∈ Kv | |x|v ≤ 1}. The maximal
ideal of Ov will be denoted by mv and the residue field Ov/mv by kv, using the
lowercase form of the letter naming the field. For a finite subset S ⊂ Ω∞K we also
letOS := {x ∈ K | |x|v ≤ 1∀ v ∈ Ω∞K \ S}.

The ring of adeles ofK (see section 1.3 below) will be denoted by AK and the
ring of finite adeles by A∞K .

This notation for completions might cause confusion, if a non-Archimedean
valuation v is (legitimately) confused with the corresponding prime ideal p: above
we have defined Op to be the localization of O at p. We will try to always make
clear which of the two we mean. For example, if K = Q,O = Z and p is a prime,
we will denote by Z(p) the localization of Z at the prime ideal (p) and by Zp the
p-adic integers.
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Chapter 1

Varieties and Points

We begin this exposition by collecting some geometric definitions and facts
that we will use later. We will make use of the language of schemes, but we hope
that the reader familiar only with varieties over non-algebraically closed fields
will have little difficulty in understanding the concepts and results. For the basic
definitions and facts, we refer to [18], or to the classic [13]. Much of the material
of this chapter is taken from [25].

Recall that, if S is a scheme, an S-scheme is a pair (X, f), whereX is a scheme
and f : X → S is a morphism of schemes, called the structural morphism
of X. A morphism of S-schemes is a morphism of schemes compatible with
the structural morphisms. If R is a commutative ring, by R-scheme we mean
a (SpecR)-scheme. An S-scheme (X, f) is called separated (or proper, of finite
type, projective and so on) if the structural morphism f : X → S is.

Let k be a field. A variety over k is a separated k-scheme of finite type. Notice
that we do not assume varieties to be reduced or irreducible. If L | k is a field
extension and X is a k-scheme, we denote by XL the L-scheme X ×k SpecL.

1.1 Scheme-valued Points

In this section, we introduce the “functorial point of view”, as described for
example in [8], I.4 and VI. This is also the point of view adopted in the lecture
notes [1] which are, unfortunately, not publicly available.

As a motivating example, consider the equation in n indeterminates given by
a polynomial F (X1, . . . , Xn) ∈ Q[X1, . . . , Xn]:

F (X1, . . . , Xn) = 0.

To find the solutions of such an equation, it is convenient to study the scheme
X = SpecQ[X1, . . . , Xn]/(F ), or other related geometric objects. But, in the end,
what we want to know are its rational points: n-uples (a1, . . . , an) ∈ Qn such that
F (a1, . . . , an) = 0.

These points correspond to maximal idealsm ⊂ R := Q[X1, . . . , Xn]/(F ) such
that R/m = Q, the correspondence being given by

(a1, . . . , an)←→ (X1 − a1, . . . , Xn − an).
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Any of these in turn corresponds to a morphism of schemes SpecQ → X, given
by the quotient map R� R/m = Q.

Motivated by this example, we give the following general definition.

Definition 1.1. Let S be a scheme and X and S-scheme. If T is another S-
scheme, a T -point ofX is a morphism of S-schemes T → X. The set of T -points
of X will be denoted by X(T ) := HomS(T,X). If T = SpecR is affine, a T -point
of X will also be called an R-point and we set X(R) := X(SpecR).

If k is a field and X a variety over k, the k-points of X are also called rational
points of X.

Notice that X(T ) = HomS(T,X) is functorial in both T (contravariantly) and
X (covariantly):

• For any map of S-schemes φ : T ′ → T , we have a map of sets X(φ) :
X(T )→ X(T ′), given by composition ψ 7→ ψ ◦ φ.
• For any map of S-schemes f : X → X ′, we have a map of sets f(T ) :
X(T )→ X ′(T ) given by composition g 7→ f ◦ g.

Remark 1.2. In Definition 1.1, the base scheme S does not appear in the nota-
tion “X(T )”. It will usually be clear from the context which base scheme we are
working over.

Example 1.3. Let k be a field, L | k a field extension andX a variety over k. Then
the L-points of XL are the same as the L-points of X, that is XL(L) = X(L).
In fact, any map of k-schemes SpecL → X factors through the pullback XL =
X ×k SpecL. This is just a rephrasing of the universal property of the fibered
product in this specific case.

Remark 1.4. Let L | k be an algebraic field extension and let X be a k-scheme.
The image of any map of k-schemes SpecL → X is a point of X, whose residue
field is a subfield of L, so we have a well-defined map

ψ : X(L) −→ X.

However, this map is, in general, not surjective nor injective. Clearly it can’t
be surjective if dimX > 0, because points of positive dimension have residue
fields of positive transcendence degree over k. If there exists a non-trivial k-
automorphism σ of L, then ψ is not injective: in fact, for any fixed morphism of
k-schemes f : SpecL → X, the composition f ◦ Specσ : L → X has the same
set-theoretic image as f , although it defines a different map of schemes.

In practice, if X = Spec k[X1, . . . , Xn]/I is an affine variety over a field k and
m = (X1 − a1, . . . , Xn − an) ⊃ I is a maximal ideal, we will denote by (a1, . . . , an)
the k-point of X given by k[X1, . . . , Xn]/I � k[X1, . . . , Xn]/m. Similarly, if X =
Proj k[X0, . . . , Xn]/I is a projective variety and m = (aiXj − ajXi)0≤i,j≤n, we will
denote by (a0 : · · · : an) the k-point ofX given by k[X0, . . . , Xn]/I � k[X0, . . . , Xn]/m
(see [18], Lemma 2.3.43).
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1.1.1 Rational Points over Topological Fields

Let k be a topological field and let X be a variety over k. In our applications,
k will be a completion of a number field with its analytic (Euclidean or p-adic)
topology. We want to give a new topology to the setX(k) of rational points ofX,
that we will call the analytic topology.

If X ⊂ An is affine, we have X(k) ⊂ An(k) = kn and we give X(k) the sub-
space topology of the product topology.

If X is not affine, we can cover it with affine open subschemes {Xi}i∈I , with
glueing data {(Xij, ϕij : Xij

∼−→ Xji)}i,j∈I . By functoriality of Xi(k), this pro-
vides topological spaces {Xi(k)}i∈I with glueing data {(Xij(k), ϕij(k) : Xij(k)

∼−→
Xji(k))}i,j∈I . We need to check that the maps of varieties ϕij give rise to con-
tinuous maps ϕij(k), but this is true because rational maps are continuous with
respect to the topology of k. So we can glue theXij(k) to get a topological space,
which coincides set-theoretically with X(k). One can also show that this topol-
ogy does not depend on the choice of the affine covering {Xi}i∈I .

Remark 1.5. If k = C with its Euclidean topology, we can go further and equip
X(C) with the stucture of a complex analytic spaceXan, which will be a complex
manifold ifX is smooth. Moreover, restricting to the case of projective varieties,
we have an equivalence between the category of coherent sheaves onX and that
of coherent sheaves of Xan, which respects cohomology. This correspondence,
due to Serre [28], has been proven very fruitful in the study of algebraic varieties
over the complex numbers.

1.2 Models

For the whole section, we letR be an integral domain andK its fraction field.

If X is a K-scheme, or a variety over K, and m is a maximal ideal of R with
residue field k = R/m, we would like to be able to talk about the k-scheme de-
fined by the reductions modulo m of the equations defining X. To do this, we
will need to “spread out” X to an R-scheme. In other words, we need an R-
scheme X such that its generic fiber X ×R K coincides with X.

Definition 1.6. Let X be a K-scheme. An R-model for X is a pair (X , ϕ) where
X is a flat R-scheme of finite presentation with surjective structural morphism
X → SpecR and ϕ : X ×R K → X is an isomorphism.

In practice, we will omit the isomorphism ϕ from the notation and simply
say that “X is an R-model for X”.

In the situation above, anR-model forX might not exist in general. However,
if X is of finite presentation, there is always a localization R[f−1] of R such that
an R[f−1]-model for X exists. See [25], Theorem 3.2.1.

In some specific cases it is actually easy to find models.

Example 1.7. Assume that R is a Dedekind domain and let X ⊂ PnK be a pro-
jective variety over K. Assume that X is reduced and irreducible. Consider the
natural inclusion PnK ↪→ PnR and letX be the closure ofX in PnR, equipped with its
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reduced scheme structure. Then X is reduced and irreducible, and its generic
fiber coincides with X. Moreover, the structural morphism X → SpecR is sur-
jective and flat by [18], Proposition 4.3.9, so that X is an R-model for X.

For example, if X is an hypersurface defined by a single equation

F (X0, . . . , Xn) = 0 (1.1)

for some homogeneous F ∈ R[X0, . . . , Xn] such that the coefficients of F gen-
erate the trivial ideal, we have that the projectiveR-schemeX ⊂ P3

R defined by
(1.1) is an R-model for X.

Remark 1.8. If X is a K-scheme of finite presentation and X1, X2 are two R-
models forX, there is a dense open subscheme U ⊂ SpecR such thatX1×RU ∼=
X2×RU . In particular, ifR is a Dedekind domain, we haveX1×RR/p ∼= X2×RR/p
and X1 ×R R̂p

∼= X2 ×R R̂p for all but finitely many primes p of R.
Let X be a K-scheme and X an R-model for X. If m is a maximal ideal of

R and k = A/m, we call the k-scheme X̃ = X ×R k the reduction of X modulo
m. In general, this depends on the choice of the R-model X . If X is affine and
P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) are two R̂m-points of X, we say that P is
congruent to Q modulo m (in symbols, P ≡ Q (mod m)) if they define the same
k-point of X̃, that is if Pi − Qi ∈ m for i = 1, . . . , n. Similarly, if X is projective
and P = (P0 : · · · : Pn) and Q = (Q0 : · · · : Qn) are two R̂m-points of X̃, we say
that P is congruent to Q modulo m if Pi −Qi ∈ m for i = 0, . . . , n.

Example 1.9. Continuing on Example 1.7 above, let p be a maximal ideal of R.
Then the reduction X̃ of X modulo p is a variety over k = R/p of the same
dimension of X, but it is not necessarily irreducible or reduced, even though X
is (see [18], Theorem 4.3.12).

1.3 Adelic Points

Let K be a number field and let ΩK denote the set of normalized valuations
of K. For v ∈ ΩK we denote by Kv the completion of K with respect to v and, if
v is non-Archimedean, byOv the ring of integers of Kv.

Recall that the ring of adeles ofK is the restricted topological product of the
Kv’s with respect to theOv’s

AK :=
∏̂

v∈ΩK

(Kv,Ov) = {(αv)v∈ΩK
|αv ∈ Ov for all but finitely many v}

where for v Archimedean we letOv = Kv. The topology on AK is defined by the
basis of open sets

B =

{ ∏
v∈ΩK

Uv

∣∣∣∣Uv ⊂ Kv open, Uv = Ov for all but finitely many v

}
.

This makes AK a topological ring, with component-wise operations. See [5],
II.13 for details.
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LetX be a variety overK. As a set, we have already definedX(AK) in Section
1.1: in fact, AK is a K-algebra via the diagonal embedding of K in AK . But we
would also like to give X(AK) a suitable topology. There are several approaches
for this, all of them giving the same result; see for example [6] or [19]. Here we
follow [25], Section 2.6.3.

Let X be anOS-model for X, for some finite subset S ⊂ Ω∞K . In section 1.1.1
we have endowed X (Kv) = X(Kv) with a topology. For every v ∈ Ω∞K \ S, we
give then X (Ov) ⊂ X (Kv) the subspace topology and for v ∈ S we let X (Ov) =
X(Kv). Then it can be seen that X(AK) coincides, as a set, with the restricted
product ∏̂

v∈ΩK

(X(Kv),X (Ov))

which has a topology, with basis{ ∏
v∈ΩK

Uv

∣∣∣∣Uv ⊂ X(Kv) open, Uv = X (Ov) for all but finitely many v

}
.

We give X(AK) this topology.
This construction depends a priori on the choice of the model X . But actu-

ally, since any two models differ only at finitely many places of K (see Section
1.2 above), we see that any choice of a model gives rise to the same topology
(see [5], II.13, Lemma at the beginning of page 63).

Example 1.10. If X is projective, then any Kv-point of X can be scaled to give
an Ov-point of X . This means that X (Ov) = X(Kv) for all non-Archimedean v
(this also follows from the valuative criterion for properness, see [13] Theorem
II.4.7 or [25] Theorem 3.2.12). In particular, X(AK) =

∏
vX(Kv) as topological

spaces, where the product on the right has the product topology.

1.4 Quadric Surfaces

In this section we wish to collect some definitions and facts about our main
geometric object of study, that is projective quadric surfaces over a field.

Let k be any field and P3
k = Proj k[X0, X1, X2, X3] be the three-dimensional

projective space over k. By quadric surface over kwe mean a projective k-scheme
Y ⊂ P3

k given by a single equation

F (X0, X1, X2, X3) = 0 (1.2)

for some non-zero polynomial F ∈ k[X0, X1, X2, X3], homogeneous of degree 2.
Assume now that char k 6= 2. Then the equation (1.2) can be given in the form

xTMY x = 0 (1.3)

where x = (X0, X1, X2, X3) and MY ∈ M4(k) is a symmetric 4 × 4 matrix with
entries in k, called the matrix associated to Y .
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The surface Y is smooth if and only if detMY 6= 0, and in this case it is called
non-degenerate; otherwise it is called degenerate.

The determinant detMY of MY will be denoted by ∆Y and called the dis-
criminant of Y . Its class in k×/(k×)2 is easily seen to be invariant under linear
changes of coordinates.

Proposition 1.11. Let k be a field with char k 6= 2 and Y a smooth quadric surface
in P3

k. Assume that Y (k) 6= ∅. Then Y is rational (that is, birational to P2
k).

Proof. Let P ∈ Y (k) and let H ⊂ P2
k be a hyperplane not containing P . For any

Q ∈ Y different from P , consider the line through P and Q and its intersection
φ(Q) with H. It can be checked that this defines a birational map Y 99K H.

For a different proof, see [8], Section IV.2.5.

Note that over a fixed algebraic closure k of k, all smooth quadric surfaces
are isomorphic. By [13], Exercise I.2.15, such a quadric surface is isomorphic to
P1
k
× P1

k
, and it contains two families of lines.

Proposition 1.12. Let Y be a smooth quadric surface over a field k with char k 6=
2. Then the two families of lines on Y ×k k are defined over k(

√
∆Y ) and are

conjugate to each other.

Proof. See [3], Lemma 2.1 or [8], Section IV.3.2.

We will need a simple fact about the number of points of quadric surfaces
over finite fields.

Proposition 1.13. Let k be a finite field with q elements, with q odd. Let Y be a
smooth quadric surface in P3

k. Then Y has at least 3 rational points.

Proof. For an elementary proof, see [15], Theorems 6.26 and 6.27.

Remark 1.14. We can actually be more precise and say that

#Y (k) =

{
(q + 1)2 if ∆Y ∈ (k×)2,

q2 + 1 otherwise.

See [3], Lemma 2.2 for a proof. Notice that the case ∆Y ∈ (k×)2 follows trivially
from the fact that Y ∼= P1

k × P1
k.



19

Chapter 2

The Hasse Principle

When studying the rational points of a varietyX overQ, it is often convenient
to study the behaviour ofX at different places of Q, that is to study the setX(Qp)
of Qp-points of X, for different primes p. For example, sometimes it is easy to
conclude that X(Q) is empty: since X(Q) ⊂ X(Qp), if X(Qp) is empty for some
place p, then X(Q) is clearly empty as well!

Example 2.1. Consider the projective conic X ⊂ P2
Q given by the equation X2 +

Y 2 = 3Z2. Assume that (x : y : z) ∈ X(Q3) is a Q3-point of X. We can assume
that x, y and z are in Z3, and at least one of them is a unit. Working modulo 3,
we see that 3 |x2 + y2, which implies that 3 |x and 3 | y, since the only quadratic
residues modulo 3 are 0 and 1. But then x = 3a and y = 3b for some a, b ∈
Z3, so we have 9a2 + 9b2 = 3z2 =⇒ 3a2 + 3b2 = z2. This implies that 3 | z,
contradicting the assumption that at least one of x, y and z was a unit in Z3. So
we have X(Q3) = ∅, thus in particular X(Q) = ∅.

Of course, we can consider p =∞ as well.

Example 2.2. The conic X ⊂ P2
Q defined by X2 + Y 2 + Z2 = 0 has no rational

point, because X(R) = ∅.

It is natural to ask if the converse holds: does the existence of points over
every completion imply the existence of a rational point? More precisely, for
varieties X over a number field K, does the implication

X(Kv) 6= ∅ for every place v of K =⇒ X(K) 6= ∅ (2.1)

hold?
Unfortunately, this is not always the case.

Example 2.3 ([10], Problem 121). The equation

(X2 − 2)(X2 − 17)(X2 − 34) = 0 (2.2)

has a solution in Qp for all p ≤ ∞, but no solutions in Q. To see this, notice first
that it has six real solutions, and none of them is in Q. So it remains to show that
it has a solution in Qp for every prime p <∞. By Proposition 3.11 below, we see
that 2 is a square in Q17 (because 62 ≡ 2 (mod 17)) and that 17 is a square in Q2,
so (2.2) has solutions in Qp for p = 2, 17. Finally, if p 6= 2, 17,∞ and none of 2 and
17 is a square in Qp, then 34 = 2 · 17 must be a square in Qp, again by Proposition
3.11. So in any case (2.2) has a solution in Qp.
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There are more classical counterexamples, such as the projective genus one
curve defined over Q by the equation

2Y 2 = X4 − 17Z4

discovered independently by Lind [17] and Reichardt [26].
However, there are classes of varieties for which the implication in (2.1) does

hold. An example is given by quadric hypersurfaces.

Theorem 2.4 (Hasse-Minkowski). Let K be a number field and X ⊂ PnK be a hy-
persurface defined by a single homogeneous equation of degree 2. ThenX(K) 6= ∅
if and only if X(Kv) 6= ∅ for every place v of K.

Proof. See [27], Theorem IV.8.

For a family of varieties F , we say that varieties of F satisfy the local-global
principle (also called Hasse principle) if the implication 2.1 holds for every X ∈
F . The Theorem above can be rephrased as: “Projective quadrics satisfy the
local-global principle.”

Even if this strong condition doesn’t hold, one can still hope that the study of
points over the completions can give us information about the rational points.
This motivates us to study the solubility of equations over the completions of a
number field.

2.1 Hensel’s Lemma

Let K be a number field and v a non-Archimedean place of K. We denote
the completion of K at v by Kv and the ring of integers of Kv by Ov. Let also mv

be the maximal ideal ofOv and kv = Ov/mv the residue field.
In practice, it is often possible to reduce questions about Kv to questions

about the residue field kv. The main tool for this is Hensel’s Lemma.

Theorem 2.5 (Hensel’s Lemma). Let f(X) ∈ Ov[X] be a polynomial and suppose
that there is x0 ∈ Ov such that

|f(x0)|v < (|f ′(x0)|v)
2
.

Then there is a unique x ∈ Ov satisfying

f(x) = 0 and |x− x0|v <
|f ′(x0)|v
|f(x0)|v

.

Proof. For a proof in the caseK = Q, see [10], Section 3.4. For a proof that works
in a more general setting, see [7], Theorem 7.3.

Remark 2.6. The classical proof of Hensel’s Lemma is constructive: the exis-
tence of the root x is proven by giving a method to compute a Cauchy sequence
converging to it. This construction is the p-adic equivalent of Newton’s Method
for approximating roots of real-valued functions.
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Working with varieties rather than with single equations, we would like to
have a higher-dimensional analogue of the result above. In practice, we will
often use the following.

Corollary 2.7. Let F (X1, . . . , Xn) ∈ Ov[X1, . . . , Xn] be a polynomial and suppose
that there is x0 ∈ Onv such that

|F (x0)|v <
∣∣∣∣ ∂F∂Xj

(x0)

∣∣∣∣2
v

for some j. Then there is x ∈ Onv such that F (x) = 0.

Proof. Write x0 = (a1, . . . , an) and assume without loss of generality that j = 1.
Apply Hensel’s Lemma to f(X) = F (X, a2, . . . , an) ∈ Ov[X].

Remark 2.8. We can easily deduce the following from Corollary 2.7. LetX ⊂ PnKv

be a smooth projective variety over Kv and let X̃ be a reduction of X modulo v
(see Section 1.2). Assume that X is a hypersurface given by the zero locus of
some homogeneous polynomial F ∈ Ov[X0, . . . , Xn]. If x̃ = (x̃0 : · · · : x̃n) ∈
X̃(kv) is a smooth point of the reduction, then there is x ∈ X(Kv) that reduces
to x̃, that is, such that x ≡ x̃ (mod v).

The same result also holds when dealing with systems of polynomial equa-
tions.

Proposition 2.9. Let F1, . . . , Fr ∈ Ov[X1, . . . , Xn] be polynomials, with r ≤ n and
let

J =

(
∂Fi
∂Xj

)
i,j

be their Jacobian matrix. Let x0 ∈ Onv be such that there is an r × r submatrix M
of J(x0) such that

max
i
{|Fi(x0)|v} < | detM |2v.

Then there is x ∈ Onv such that

Fi(x) = 0 for all i and max
i
|xi − (x0)i|v < | detM |v.

Proof. See [11], 5.21.

2.2 Local Solubility

Let again K be a number field and v a non-Archimedean place of K, and let
Ov, mv and kv be as before. LetX be a projective hypersurface in PnKv

, defined by
a single homogeneous polynomial equation with coefficients inOv

F (X0, . . . , Xn) = 0 with F ∈ Ov[X0, . . . , Xn] homogeneous. (2.3)
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We may assume that at least one of the coefficients of F is inO×v , so that (2.3)
also defines anOv-scheme X .

We can now present an algorithm to determine whetherX has anyKv-point.
This algorithm can actually be generalized to any smooth projective variety, us-
ing Proposition 2.9 instead of Corollary 2.7. A generalization is contained in [4],
which is yet unpublished.

First of all, recall that any Kv-point of X can be written as (a0 : · · · : an) for
some a0, . . . , an ∈ Ov, at least one of which is in O×v . This implies that X(Kv) =
X (Ov); in particular, we only need to check for the existence of points of this
form. Up to repeating the procedure for every standard affine patch (so n + 1
times in total), we can assume thatX is affine in An

Kv
, given by a single equation

f(X1, . . . , Xn) = 0 with f ∈ Ov[X1, . . . , Xn], (2.4)

and only look for points with integer coordinates in this affine patch. Again we
assume that at least one of the coefficients of f is a unit. Let nowX be the model
of X overOv defined by (2.4).

The procedure goes as follows.

Let i = 1 and consider the finitely many (more precisely, (#kv)
ni) points of

(Ov/mi
v)
n = An

Ov
(Ov/mi

v). For each x0 = (x1, . . . , xn) ∈ (Ov/mi
v)
n, it is possible to

check if f(x0) ≡ 0 (mod mi
v).

Now there are two cases in which we can give a definitive answer.

(a) If none of the points of (Ov/mi
v)
n satisfies our equation thenX (Ov/mi

v) = ∅,
so also X (Ov) = ∅, and the procedure stops.

(b) For every x0 such that f(x0) ≡ 0 (mod mi
v), we can check if it satisfies the

condition of Corollary 2.7. If it does, then we can lift it to a point of X (Ov).

If we are in neither of the situations above, that is if we do find (Ov/mi
v)-

points of X , but we can’t say if any one of them lifts to an Ov-point, we can
refine the search by looking at a smaller v-adic neighbourhood of the point. In
other words, we increase i by one and repeat the procedure.

To see that the procedure stops after finitely many steps, assume by con-
tradiction that for every m ∈ N there is xm ∈ (Ov/mm

v )n such that f(xm) ≡ 0
(mod mm

v ), but |f(xm)|v ≥ |∂f/∂Xj(xm)|2v for every j. We can assume thatxm ≡ xi
(mod mi

v) for every i ≤ m. Lifting each xm to a point of Onv , we get a Cauchy
sequence in Onv , which then converges to some x ∈ Onv , which by continuity
(polynomial functions are continuous maps on topological rings) satisfies:

f(x) = lim
m→+∞

f(xm) = 0 and ∂f/∂Xj(x) = lim
m→+∞

∂f/∂Xj(xm) = 0 for every j.

But this is a singular point ofX, and we assumed thatX is smooth. We conclude
that the procedure terminates after finitely many steps.
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2.2.1 Archimedean Places

For our purpose, that is determining the existence of Kv-points for every
place v of K, we also need to address the Archimedean places.

If Kv
∼= C, then the existence of Kv-points is a trivial question for hypersur-

faces defined by one polynomial. For varieties defined by more equations, we
just need to use the Nullstellensatz and see if the polynomials generate the triv-
ial ideal. This can be done for example using Gröbner Bases, see [7], Chapter
15.

If Kv
∼= R, there are as well algorithms to determine whether X has Kv-

points, but we will not treat them in this thesis. See for example [2], Theorem
13.13.

2.2.2 Everywhere Local Solubility

We have seen that there is a finite procedure to determine the existence of
Kv-points of a projective hypersurface, for a fixed place v of K. However, we
would like to ask the same question for all of the infinitely many places of K.

Let X ⊂ PnK be a smooth projective variety over K of dimension d. Our goal
is to show that there is a finite and computable set T ⊂ Ω∞K such that, for every
v ∈ Ω∞K \ T , the reduction ofX modulo v has smooth points, that will then lift to
Kv-points by Proposition 2.9. This can be done, provided that we know the Betti
numbers bi(X(C)) = dimCH

i(X(C),C) of X(C). The existence of Kv-points for
v ∈ T can be checked with the methods described above, so that in the end we
will get a finite procedure to check for the existence of Kv-points for every v,
that is, everywhere local solubility.

For simplicity, we will assume that X is a smooth hypersurface given by a
single equation

f(X0, . . . , Xn) = 0 (2.5)

for some f ∈ O[X0, . . . , Xn], but everything can be generalized easily to the case
of varieties defined by a system of polynomial equations.

Let X be the O-scheme defined by (2.5). Let S be the set of finite primes
of K dividing the ideal generated by the coefficients of f , which is finite and
computable. Then X is anOS-model for X.

Since X is smooth, f together with its partial derivatives generate the triv-
ial ideal in K[X0, . . . , Xn], so there are polynomials a, a0, . . . , an ∈ K[X0, . . . , Xn]
such that

af +
n∑
i=0

ai
∂f

∂Xi

= 1 in K[X0, . . . , Xn] (2.6)

and by clearing the denominators we get

bf +
n∑
i=0

bi
∂f

∂Xi

= N inO[X0, . . . , Xn] (2.7)
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for some N ∈ O and some b, b0, . . . , bn ∈ O[X0, . . . , Xn]. By considering the re-
duction of (2.7), we see that X ×OS

kv is smooth for every v not in S and not
dividing N .

Let now V be a smooth, projective and geometrically irreducible variety over
the finite field with q elements Fq. From the Lefschetz trace formula, one can
deduce that

∣∣#V (Fq)− (qd + 1)
∣∣ ≤ 2d−1∑

i=1

qi/2 dimQl
H i(VFq

,Ql)

where l is a prime not dividing q and H i(VFq
,Ql) is the i-th étale cohomology

group with Ql coefficients. See [22], Section VI.12.
If V is the reduction of a variety over a number field, for example in our case

V = X ×OS
kv for some v ∈ Ω∞K , we have that dimQl

H i(VFq
,Ql) coincides with

the i-th Betti number bi(X(C)) of X. Thus, knowing the Betti numbers of X(C)
enables us to compute a bound M such that for every v ∈ Ω∞K with #kv > M the
reduction of X modulo v has points.

Putting everything together, we see that we can indeed compute a finite set
T of places of K such that for every v 6∈ T we have X(Kv) 6= ∅. As explained
above, we have then a finite procedure to check for everywhere local solubility.

2.3 Approximation Theorems

We recall the following result on the independence of inequivalent valua-
tions.

Theorem 2.10 (Weak Approximation). Let k be any field and let v1, . . . , vn be non-
equivalent, non-trivial valuations on k. For i = 1, . . . , n, let ki be the topological
space consisting of k with the topology induced by vi. Then the image of the diag-
onal embedding of k in

∏n
i=1 ki is dense in the product topology.

Proof. See [5], II.6.

In other words, given α1, . . . , αn ∈ k and ε1, . . . , εn ∈ R>0 there is always x ∈ k
such that |x− αi|vi < εi for all i = 1, . . . , n.

Let now K be a number field and let

AK =
∏̂

v∈ΩK

(Kv,Ov) = {(αv)v∈ΩK
|αv ∈ Ov for almost all v}

be the ring of adeles of K (See Section 1.3). Since any α ∈ K is in Ov for all but
finitely many v, we have a natural inclusion of K into AK , and the image of K
under this map is discrete in AK (see [5], Section II.14).

However, as soon as we remove one component from the restricted product,
the image of K becomes dense in this smaller ring.
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Theorem 2.11 (Strong Approximation). Let v0 ∈ ΩK be any valuation. Then the
image of the natural embedding

K ↪→ Av0
K :=

∏̂
v∈ΩK\{v0}

(Kv,Ov).

is dense in the restricted product topology.

Proof. See [5], II.15.

We can rephrase this result as follows: given distinct valuations {v1, . . . , vn} ∈
ΩK \ {v0}, elements α1, . . . , αn ∈ Kvn and ε1, . . . , εn ∈ R>0, there is x ∈ K such
that |x− αi|vi < εi for i = 1, . . . , n and |x|v ≤ 1 for v 6∈ {v0, v1, . . . , vn}.

As a corollary, and as an example of “Strong Approximation away from infin-
ity”, we can prove the following version of the well known Chinese Remainder
Theorem.

Corollary 2.12. Let p1, . . . , pn ∈ Z be distinct prime numbers, e1, . . . , en ∈ N>0

and α1, . . . , αn ∈ Z. Then the system of congruences
x ≡ α1 (mod pe11 )

x ≡ α2 (mod pe22 )

· · ·
x ≡ αn (mod penn )

has a solution x ∈ Z.

Proof. Apply the (rephrasing of) the theorem above with K = Q, v0 =∞, vi = pi
and εi = p−eii for i = 1, . . . , n.

2.3.1 Approximation Theorems for Varieties

Let X be a variety over K. Following Chapter 1, the sets X(Kv) (for any v ∈
ΩK) and X(AK) of Kv-points and adelic points are topological spaces. We can
therefore ask ourselves if X satisfies Weak or Strong Approximation, that is if
the images of the diagonal maps

X(K) ↪→
∏
v∈ΩK

X(Kv) (Weak Approximation)

and

X(K) ↪→ X(AK) (Strong Approximation)

are dense.

Remark 2.13. If X is projective, the two conditions above are equivalent, since
X(AK) =

∏
vX(Kv) (Example 1.10).

Strong Approximation is usually too strong a condition. For example, if X is
affine, we have thatX(K) is discrete inX(AK), becauseK is discrete in AK (see
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[5], II.14 or [25], Section 2.6.4). This is why we are usually interested in a weaker
condition, that we now define.

Let S ⊂ ΩK be a finite subset and define

AS
K :=

∏̂
v∈ΩK\S

(Kv,Ov).

If S is the set of all Archimedean places of K, we will also write A∞K in place of
AS
K . Then, choosing an OT -model X of X, for some finite set T ⊂ Ω∞K , we can

define a topological space

X(AS
K) =

∏̂
v∈ΩK\S

(X(Kv),X (Ov))

as in Section 1.3.
We say that X satisfies Strong Approximation away from S if the image of

the diagonal embedding

X(K) ↪→ X(AS
K)

is dense. If S is the set of Archimedean valuations of K, we say that X satisfies
strong approximation away from infinity.

Remark 2.14. In the above discussion, we haven’t paid much attention to the
cases where

∏
vX(Kv) orX(AK) are empty. In this cases, by convention, we say

that X satisfies Weak or Strong Approximation, respectively.

Weak and Strong Approximation are, in a sense, a refinement of the Local-
Global Principle: not only we are asking that rational points exist, provided that
there are points locally everywhere, but we also want to know if any collection
of local points can be approximated by a rational point.

Example 2.15. Let X be a smooth projective quadric hypersurface in PnK . Then
X satisfies both Weak and Strong Approximation. In fact, assume that X has a
K-point (otherwise we are done by Theorem 2.4). Then X is rational (Propo-
sition 1.11) and since satisfying Weak approximation is a birational invariant
([12], Remark 2.1.4), then X satisfies Weak Approximation, because An−1

K does.
By Remark 2.13, it also satisfies Strong Approximation.
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Chapter 3

The Brauer Group of a Field

In this Chapter we introduce the Brauer group of a field, an object that will
play a central role in our study of rational points. These ideas will be then ex-
tended to schemes in Chapter 4.

A modern text on the subject is [30]. Another reference is Milne’s online
notes on Class Field Theory [21].

A natural way to study this object is via Group Cohomology. We will use the
main results of the subject, and refer to [31] for proofs and other facts.

3.1 Quaternion Algebras

We wish to introduce the theory of central simple algebras by studying the
case of quaternion algebras. There are at least two reasons for this: first, it is
useful to keep in mind this simple example when dealing with the general case,
as many of the important ideas already appear in this context; second, in our
main object of study (punctured affine cones over quadric surfaces) this is the
only type of central simple algebras that appears (see Proposition 5.1).

We will mainly follow [30], Chapter 1. The reader can find there all the proofs
that we omit, as well as other interesting facts.

3.1.1 Basic Facts

We begin by recalling the best known example, the quaternions H.

Example 3.1. Let H be the four dimensional R-algebra with basis {1, i, j, k} and
multiplication given by

i2 = j2 = −1, ij = −ji = k.

Then H is a division algebra over R. To see this, define the conjugate of a quater-
nion q = x+ yi+ zj + wk ∈ H to be

q = x− yi− zj − wk

and its norm to be N(q) = qq = x2 + y2 + z2 + w2. Then N(q) 6= 0 if and only if
q 6= 0 and that in this case 1

N(q)
q is a multiplicative inverse for q.

In fact, the algebra H is the only non-commutative finite-dimensional divi-
sion algebra over R. This is Frobenius’ Theorem (see [9], §14).



28 Chapter 3. The Brauer Group of a Field

Let us now fix an arbitrary field k. We can repeat the construction above in a
straightforward way, unless char k = 2. Since our main interest lies in studying
quaternion algebras over number fields and their completions, we will assume
that char k 6= 2.

Definition 3.2. Let a, b ∈ k×. The quaternion algebra (a, b) is the four dimen-
sional k-algebra with basis {1, i, j, h} and multiplication given by

i2 = a j2 = b, ij = −ji = h.

Given the introductory example, it is natural to ask whether all quaternion
algebras are division algebras. This is not the case.

Example 3.3 (The Matrix Algebra). Let b ∈ k×. The quaternion algebra (1, b) is
isomorphic to the matrix algebra M2(k). In fact, the association

i 7→ I :=

[
1 0
0 −1

]
, j 7→ J :=

[
0 b
1 0

]
defines an isomorphism (1, b) ∼= M2(k), because the matrices

Id =

[
1 0
0 1

]
, I =

[
1 0
0 −1

]
, J =

[
0 b
1 0

]
, IJ =

[
0 b
−1 0

]
are basis for M2(k) as a k-vector space, and they satisfy the relations

I2 = Id, J2 = b Id, IJ = −JI.

The example above is so important that it deserves a name.

Definition 3.4. A quaternion algebra is called split if it is isomorphic to M2(k)
as a k-algebra.

In fact, this is the only case of quaternion algebra that is not a division alge-
bra.

Lemma 3.5. A quaternion algebra is a division algebra if and only if it is not split.

Proof. See [30], Proposition 1.1.7.

The following Proposition will be very helpful in computing when a quater-
nion algebra is split.

Proposition 3.6. Let a, b, u, v ∈ k×.

1. We have (a, b) ∼= (u2a, v2b) as k-algebras.

2. If a is a square in k, then (a, b) is split.

3. We have (a, b) ∼= (b, a) as k-algebras.

4. The algebra (a, b) is split if and only if b is the norm of some element in the
quadratic field extension k(

√
a).
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Proof. For (1), notice that the association i 7→ ui, j 7→ vj induces an isomor-
phism (a, b) ∼= (u2a, v2b). Part (2) follows from (1) and Example 3.3, because if
a = u2 then (1, b) ∼= (u2, b) = (a, b). For (3) consider the substitution i 7→ abj,
j 7→ abi, which gives (a, b) ∼= (a2b3, a3b2); then the result follows from (1). We
omit the proof of (4), see [30], Proposition 1.1.7.

We have the following structure Theorem. Recall that a k-algebra A is called
central if Z(A) = k. A central division algebra is then a central algebra that is a
division ring.

Proposition 3.7. Every four-dimensional central division algebra over k is iso-
morphic to the quaternion algebra (a, b) for some a, b ∈ k×.

Proof. See [30], Proposition 1.2.1

3.1.2 Field Extensions and Tensor Products

Notice that, if A is a quaternion algebra over k and L | k is a field extension,
then A ⊗k L is a quaternion algebra over L. If A is split, then also A ⊗k L is, but
it may happen that A is not split and A ⊗k L is. In this case, we say that L splits
A, or that A is split over L. In fact, every quaternion algebra is split over some
quadratic field extension.

Proposition 3.8. Let a, b ∈ k×. Then k(
√
a) splits (a, b).

Proof. In fact, (a, b)⊗kk(
√
a) is just the quaternion algebra (a, b) defined over the

field k(
√
a), and a is a square in this field.

We now consider tensor products of quaternion algebras. This will give the
group structure of the Brauer group as defined in Section 3.2. Notice that the
tensor product of two matrix algebrasMn(k) andMm(k) is isomorphic toMnm(k).

Of course, the tensor product of two quaternion algebras cannot be a quater-
nion algebra itself, since it has dimension 16 as a k-vector space.

Proposition 3.9. Let a, b, c ∈ k×. Then (a, b)⊗k (a, c) ∼= (a, bc)⊗k M2(k).

The proof can be found in [30], Lemma 1.5.2. The next corollary follows eas-
ily.

Corollary 3.10. Let a, b ∈ k×. Then (a, b)⊗k (a, b) ∼= M4(k).

Proof. By Proposition 3.9 and Proposition 3.6 we have

(a, b)⊗k (a, b) ∼= (a, b2)⊗M2(k) ∼= M2(k)⊗k M2(k) ∼= M4(k).
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3.1.3 Quaternion Algebras over Qp

As an example, we consider now the case k = Qp, where p is a prime number,
which will be the most important in our applications. Similar considerations
can be made in the case of completions of number fields.

Let a, b ∈ Q×p and consider the quaternion algebra A = (a, b) over Qp. Up
to multiplying by squares as in Proposition 3.6(1), we can assume that a, b ∈ Zp
and that they are not in the square of the maximal ideal (that is, p2 - a, b).

We recall the following fact, which is just an application of Hensel’s Lemma
(Theorem 2.5). See also [10], Proposition 3.4.3, Corollary 3.4.4 and Problem 116.

Proposition 3.11. 1. Let u ∈ Z×p be a p-adic unit. If p 6= 2, then u is a square in
Qp if and only if its class in the residue field Fp is a square. If p = 2, then u is
a square in Qp if and only if its class in Z2/8Z2 is 1.

2. Let a ∈ Q×p . Then a is a square in Qp if and only if it can be written in the
form a = u2p2m, where u ∈ Z×p is a p-adic unit and m ∈ Z.

The proposition above gives a quick way to conclude, in some cases, that
A is split (Proposition 3.6(2)). If none of a and b is a square in Qp, we have to
consider the quadratic extension Qp(

√
a) |Qp (or, symmetrically, the extension

Qp(
√
b) |Qp). Sometimes it is still very easy to check if A = (a, b) is split.

In fact, the following holds. The proof uses techniques from Galois Coho-
mology, and we omit it. See [29] Proposition XIII.9.

Proposition 3.12. Let L | k be a finite, abelian extension of local fields and let
NL | k : L× → k× be the norm map. Then [k× : NL | k(L

×)] = [L : k].

Remark 3.13. With the help of the result above, we can also determine the index
[O×k : NL | k(O×L )]. In fact, let e = e(L | k) be the ramification index and let π
be a uniformizer for L, so that πe is a uniformizer for k. Then L× ∼= 〈π〉 × O×L
and k× ∼= 〈πe〉 × O×k , and the norm map sends π to π[L:k]. We conclude that
[O×k : NL | k(O×L )] = e. For the unramified case, see also [29], Proposition V.3.

Example 3.14. Assume that p 6= 2. Then if a, b ∈ Z×p are p-adic units, then
Qp(
√
a) |Qp is unramified and b is a norm from Qp(

√
a) by the results above, so

A = (a, b) is split by Proposition 3.6(4).

If p = 2, this is not true any more, because Qp(
√
a) |Qp can be ramified even

if a is a p-adic unit. Recall in fact that two quadratic extensions Qp(
√
d) and

Qp(
√
d′) of Qp are the same if and only if dd′ is a square in Qp, and that, for ev-

ery n, there is only one unramified extension of Qp of degree n ([29], Corollary
III.5.2). These facts are true for any p. It follows that Q2 has one unramified
quadratic extension (that is Q2(

√
5)) and 6 ramified ones (that are Q2(

√
d) for

d = 2, 3, 6, 7, 10, 14), see Proposition 3.11.

Example 3.15. Let p = 2, a = 3 and b ∈ Q×2 . Consider the quaternion algebraA =
(3, b). We want to see for which values of b this algebra is split. This is equivalent
to determining which p-adic numbers b ∈ Q×2 are the norm of some element
of Q2(

√
3). So we have to determine the image of the norm map NQ2(

√
3) |Q2

:

Q2(
√

3)× → Q×2 , which is a subgroup G of index 2 of Q×2 (Remark 3.13).
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An element b of Q×2 is a norm from Q2(
√

3) if and only if it can be written as
b = x2 − 3y2, for some x, y ∈ Q2. Then clearly (Q×2 )2 ⊂ G, and it is enough to
work in the quotient Q×2 /(Q×2 )2, that is to determine the group G/(Q×2 )2.

Using Proposition 3.11, one can see that Q×2 /(Q×2 )2 can be given by represen-
tatives {1, 2, 3, 5, 6, 7, 10, 14}. Using the following values for (x, y) ∈ Q2 ×Q2:

(1, 0), (0, 1), (3, 1), (1, 1)

we see that G is represented, modulo squares, by {1, 5, 6, 14}.

3.2 Central Simple Algebras and The Brauer Group

In order to define the Brauer group of a field, we need to study central simple
algebras. In fact, the Brauer group can be seen as the set of such algebras with
tensor product as an operation, modulo introducing a suitable equivalence re-
lation.

For this section we fix a base field k, this time with no assumption on the
characteristic. We will be only interested in k-algebras that are finite-dimensional
over k. Recall that by k-algebra we mean a (not necessarily commutative) ring
A, containing k in its centre.

Definition 3.16. Let A be a finite-dimensional k-algebra. Then A is called cen-
tral if Z(A) = k. It is called simple if it is simple as a ring, that is if it contains
no non-trivial two sided ideal. A central simple algebra is a finite-dimensional
k-algebra that is central and simple.

Notice in particular that we assume central simple algebras to be finite-
dimensional as k-vector spaces.

Example 3.17. Division rings are simple. Moreover, the centre of a division ring
D is a field: it is a commutative subring, and if x ∈ Z(D) \ {0} then for every
y ∈ D we have xy = yx =⇒ yx−1 = x−1y =⇒ x−1 ∈ Z(D). So a division
ring is a central simple algebra over its centre K, if it is finite-dimensional as a
K-vector space.

Example 3.18. If D is a division ring and Mn(D) is the ring of n × n matrices
with coefficients in D, then Mn(D) is a central simple algebra over Z(D). See
[30], Example 2.1.2.

In particular, we see that a quaternion algebra over k is always a central sim-
ple algebra: if it is split, this follows from Example 3.18. If it is not, it follows
from Example 3.17, noting that its centre must coincide with k: this can be eas-
ily seen by imposing the conditions iq = qi and jq = qj on a generic quaternion
q = x+ yi+ zj + wk.

We have a converse to Example 3.18.

Theorem 3.19 (Wedderburn). Every finite-dimensional simple k-algebra A is of
the form Mn(D) for some n ∈ N≥1 and some division algebra D, unique up to
isomorphism.
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Sketch of proof. Let L ⊂ A be a left ideal of A. Then L is a simple A-module.
By Schur’s Lemma, D = EndA(L) is a division algebra. One then checks that
the map λ : A → EndD(L) sending a ∈ A to the homomorphism x 7→ ax is an
isomorphism. For the details, see [30], Theorem 2.1.3.

Example 3.20. If k is algebraically closed, then there is no non-split central
simple algebra over k. In fact, in that case there would be a non-trivial finite-
dimensional division algebra D over k, as in Wedderburn’s Theorem. Assume
this holds, and let d ∈ D \ k. Since D is finite-dimensional, there is some n such
that {1, d, . . . , dn} is linearly dependent over k. So there is a polynomial f ∈ k[X]
such that f(d) = 0. This means that d is algebraic over k. Since k is algebraically
closed, we have d ∈ k, a contradiction.

Recall that if A is any ring, we denote by Aop the ring that has the same addi-
tive structure and multiplication reversed.

Proposition 3.21. LetA be a central simple k-algebra of dimension n. ThenA⊗k
Aop ∼= Mn(k).

Proof. See [21], Corollary IV.2.9 or [30], Proposition 2.4.8.

Remark 3.22. The property of Proposition 3.21 can in fact be taken as a defi-
nition of central simple algebra: a k-algebra A of dimension n is central and
simple if and only if A⊗k Aop ∼= Mn(k). See [22], Proposition IV.1.1.

Recall that every automorphism of a central simple algebra is inner. This
comes from the following more general statement.

Theorem 3.23 (Skolem-Noether). LetA andB be finite-dimensional k-algebras,
withA simple andB central simple, and let f, g : A→ B be two k-algebra homo-
morphisms. Then there is b ∈ B× such that f(a) = b−1 · g(a) · b for all a ∈ A.

Proof. See [21], Chapter IV, Theorem 2.10.

Corollary 3.24. Every automorphism of a central simple algebra A is of the form
x 7→ a−1xa for some invertible a ∈ A.

Proof. Apply Theorem 3.23 to the given automorphism and the identity map
idA : A→ A. See also [30], Theorem 2.7.2.

3.2.1 Splitting Fields

The following proposition shows that the Brauer group, as contructed in Sec-
tion 3.2.2, is functorial in the base field k.

Proposition 3.25. LetA be a finite-dimensional k-algebra and L | k a field exten-
sion. Then A is central simple over k if and only if A ⊗k L is central simple over
L.

Proof. See [30], Lemma 2.2.2.

There is another characterization of central simple algebras: they are “twisted
forms” of matrix algebra.
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Proposition 3.26. LetA be a finite-dimensional k-algebra. ThenA is central sim-
ple if and only if A⊗k L ∼= Mn(L) for some n and some finite field extension L | k.

Proof. See [30], Theorem 2.2.1.

Corollary 3.27. If A is a central simple k-algebra, [A : k] is a square.

As in the case of quaternion algebras, if A is a central simple k-algebra and
L | k is a field extension, we say that L splits A if A⊗k L ∼= Mn(L) for some n.

Remark 3.28. Let A be a central simple k-algebra. Since for any field extension
L | kwe haveMn(k)⊗kL ∼= Mn(L), we have that ifL splitsA, then every extension
M |L also splits A. In particular, by taking the normal closure, we can assume
that A is split by a finite normal extension. If k is perfect, A is then split by a
finite Galois extension.

Moreover, every central simple k-algebra is split by a finite separable exten-
sion ([30], Proposition 2.2.5 or [21], Proposition IV.3.8), so the same conclusion
holds also when k is not perfect.

We can be more precise and characterize the fields that split a fixed central
simple algebra, following [21], Section IV.3. We will need the following result.

Lemma 3.29. LetA be a central simple k-algebra and letB be a simple k-subalgebra
ofA. LetC = C(B) be the centralizer ofB inA, which is a k-subalgebra ofA. Then
we have:

(a) C is simple;

(b) B is the centralizer of C in A;

(c) [B : k] · [C : k] = [A : k].

Proof. See [21], Theorem IV.3.1.

Proposition 3.30. Let A be a central simple k-algebra and let L be a field exten-
sion of k contained in A. Then the following are equivalent.

(i) L is its own centralizer in A.

(ii) [L : k]2 = [A : k].

(iii) L is a maximal commutative k-subalgebra of A.

Moreover, a finite field extension M | k splits A if and only if there is a central
simple algebraB containingM as a maximal subfield and such thatA⊗kMn(k) ∼=
B ⊗k Mm(k) for some m,n ∈ N.

Proof. Since L is commutative, it is contained in its centralizerC(L). By Lemma
3.29 we have [L : k] · [C(L) : k] = [A : k], so (i)⇐⇒ (ii).

For (ii) =⇒ (iii), let L′ be a maximal commutative k-subalgebra ofA contain-
ing L. Then L′ is contained in the centralizer of L, so [A : k] ≥ [L : k] · [L′ : k] ≥
[L : k]2, which implies L = L′.

For (iii) =⇒ (i), assume there is c ∈ A contained in the centralizer of L, but
not in L. Then L[c] is a commutative k-subalgebra of A strictly containing L,
which contradicts the maximality of L.

For the last part see [21], Corollary IV.3.6.



34 Chapter 3. The Brauer Group of a Field

3.2.2 First Definition of the Brauer Group

We are now almost ready to define the Brauer group of a field in its explicit
form. The following Proposition gives the group operation.

Proposition 3.31. The tensor product of two central simple k-algebras is a central
simple k-algebra.

Proof. Let A and B be two central simple algebras over k, and let L be an exte-
sion of k that splits both of them. Then

(A⊗k B)⊗k L ∼= A⊗k (B ⊗k L) ∼= A⊗k Mn(L) ∼= A⊗k (Mn(k)⊗k L) ∼=
∼= (A⊗k L)⊗k Mn(k) ∼= Mm(L)⊗k Mn(k) ∼=
∼= (Mm(k)⊗k Mn(k))⊗k L ∼= Mmn(k)⊗k L ∼=
∼= Mmn(L)

so A⊗k B is central simple by Proposition 3.26.

As we mentioned above, we would like the set of isomorphism classes of
finite-dimensional central simple k-algebras to form a group under the ten-
sor product. However, this is not possible, unless we quotient this set by some
equivalence relation: taking the tensor product of algebras, the dimension can
only grow. This is why we introduce the following definition, which we have
already used in Proposition 3.30.

Definition 3.32. Two central simple k-algebrasA andB are called (Brauer) equiv-
alent if there exist m and n such that A⊗k Mn(k) ∼= B ⊗k Mm(k).

Remark 3.33. By Wedderburn’s Theorem, two central simple k-algebrasA andB
are Brauer equivalent if and only if they are matrix rings over the same division
k-algebra D. Thus, two central simple k-algebras of the same dimension are
Brauer equivalent if and only if they are isomorphic.

For a finite Galois extension L | k, we let Br(L | k) denote the set of Brauer
equivalence classes of central simple k-algebras that are split by L. The ten-
sor product ⊗k clearly defines an associative and commutative operation on
Br(L | k) (Proposition 3.31), and if [A] ∈ Br(L | k) then also Aop is split by L: in
fact Aop ⊗k L ∼= (A⊗k Lop)op ∼= Mn(L)op ∼= Mn(L), since L is commutative and a
matrix ring is isomorphic to its opposite (see [14], Theorem §8.I).

We conclude that Br(L | k) forms an abelian group under the tensor product.
Moreover, by Proposition 3.25, for every finite Galois extensionM | k containing
L we have a natural inclusion map λNM : Br(L | k) ↪→ Br(M | k). The collection
{Br(L | k), λNM} then forms a filtered directed system of abelian groups indexed
by the finite Galois extensions of k, and we can take the direct limit of this sis-
tem.

Definition 3.34. The Brauer group of k is the direct limit

Br(k) = lim−→
L | k finite Galois

Br(L | k) =
⋃

L | k finite Galois

Br(L | k).
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In other words, it is the set of equivalence classes of central simple k-algebras
with the tensor product operation.

Remark 3.35. By Proposition 3.25, we have a map Br(k) → Br(L) given by A 7→
A⊗k L. Its kernel is precisely Br(L | k).

3.2.3 Cohomological Description of the Brauer Group

As we said in the introduction, a natural way to study the Brauer group, and
to prove many useful facts about it, is via Group Cohomology. This is why we
are going to describe Br(k) as a cohomology group. We will follow Milne’s notes
[21]; an alternative approach is given in [30], Chapter 4. The one we choose is
more explicit, and has the advantage of avoiding non-commutative cohomol-
ogy sets.

Fix a finite Galois extension L | k, and let G = Gal(L | k). Let A be a central
simple k-algebra containing L as a maximal subfield. See Proposition 3.30.

Let σ ∈ G. Applying Theorem 3.23 to L σ→ L ↪→ A and L ↪→ A, we see that
there is an element eσ ∈ A such that

σ(a) = eσae
−1
σ for all a ∈ L (3.1)

or equivalently

eσa = σ(a)eσ. (3.2)

Assume fσ ∈ A is such that (3.1) is satisfied with fσ in place of eσ. Then we
have f−1

σ eσa(f−1
σ eσ)−1 = f−1

σ σ(a)fσ = a, so f−1
σ eσ is in the centralizer of L in

A, which coincides with L by Proposition 3.30. So eσ is determined by σ up to
multiplication by an element in L×.

Moreover, if we fix τ ∈ G and eσ, eτ , eστ satisfying (3.1) for σ, τ and στ respec-
tively, we have that eσeτ also satisfies (3.1) for στ , so there is ϕ(σ, τ) ∈ L× such
that

eσeτ = ϕ(σ, τ)eστ . (3.3)

One can check that ϕ : G×G→ L× is a 2-cocycle, which is normalized if we
pick e1 = 1 (see [31], Application 6.5.5 and Example 6.5.7 or [21], Chapter II) and
that different choices of the eσ’s lead to cohomologous 2-cocycles. Thus we get
a well-defined element γ(A) := ϕ ∈ H2(G,L×). It can be seen that γ(A) depends
only on the isomorphism class of A ([21], Theorem IV.3.11).

Vice versa, given a normalized 2-cocycle ϕ : G × G → L×, we can define
a k-algebra A(ϕ) in the following way. As a k-vector space, let A(ϕ) have basis
{eσ |σ ∈ G} (the eσ’s are now just symbols). Let the multiplicative structure of
A(ϕ) be given by (3.2) and (3.3). It can be checked that A(ϕ) is then a central
simple k-algebra ([21], Lemma IV.3.13).

If we denote by A(L | k) the set of isomorphism classes of central simple k-
algebras containing L as a maximal subfield (warning: this notation is in con-
trast with the one used in [21]), the maps [A] 7→ γ(A) and ϕ 7→ A(ϕ) define a
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bijection betweenA(L | k) and H2(G,L×). Moreover, notice that by Proposition
3.30 every algebra containing L as a maximal subfield has dimension [L : k]2

over k. By Remark 3.33, we have then a bijection between Br(L | k) andA(L | k),
thus between Br(L | k) and H2(G,L×).

Although not easily, it can be seen (with elementary techiniques) that the
map ϕ 7→ A(ϕ) is a group homomorphism, that is thatA(ϕ+ϕ′) is Brauer equiv-
alent to A(ϕ)⊗k A(ϕ′). This is the content of [21], Lemma IV.3.15, where a proof
is sketched and other references are given. So we have the following.

Theorem 3.36. Let L | k be a finite Galois extension with Galois group G. Then
we have an isomorphism of groups

Br(L | k) ∼= H2(G,L×).

Moreover, if G = Gal(ksep | k) is the absolute Galois group of k, we have

Br(k) ∼= H2(G, k×sep).

Proof. The first part follows from the discussion above. For the second part, we
just have to take the limit over the directed system of all finite Galois extensions
of k. See [21], Corollary IV.3.10, or [31], 6.11.1 and 6.11.17.

Thanks to this new description of the Brauer group, we can now state some
of its properties.

Corollary 3.37. Let L | k be a finite Galois extension of degree n. Then every ele-
ment of Br(L | k) has order dividing n. In particular, Br(k) is torsion.

Proof. The first part holds because it does for cohomology groups, see [31],
Theorem 6.5.8. The second part follows because Br(k) is the direct limit of the
Br(L | k)’s.

Corollary 3.38. Let n be a positive integer coprime to the characteristic of k. Then
the n-torsion subgroup of the Brauer group of k is

Br(k)[n] ∼= H2(G, µn)

where G denotes the absolute Galois group of k and µn the group of n-th roots of
unity in a separable closure ksep of k.

Proof. By the assumption on the characteristic of k, we have an exact sequence

1→ µn → k×sep
n→ k×sep → 1

and from the cohomology long exact sequence we get

H1(G, k×sep)→ H2(G, µn)→ H2(G, k×sep)
n→ H2(G, k×sep)

and the first group is trivial by Hilbert’s Theorem 90 (see [31], Theorem 6.11.16).
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Corollary 3.39. Let L | k be a finite cyclic Galois extension. Then we have

Br(L | k) ∼= k×/NL | k(L
×).

Proof. See [31], Theorem 6.2.2.

3.3 The Brauer Groups of Some Special Fields

We will collect here some results about the Brauer groups of some fields that
are particularly interesting for us. The most important result for our applica-
tions is Theorem 3.44. We follow again [21], Chapter IV, Section 4.

3.3.1 Finite Fields

Finite fields have trivial Brauer group. One way to see this is using the fol-
lowing result.

Theorem 3.40 (Wedderburn’s Little Theorem). Every finite division ring is a field.

Proof. See [21], Theorem IV.4.1.

In particular, if k is a finite field, then every finite-dimensional division alge-
bra over k is a finite division ring, hence it is commutative. Then it must coin-
cide with k by Lemma 3.29. From this it follows that every central simple algebra
over k is of the form Mn(k) for some n, hence we have Br(k) = 0.

We can also give a cohomological proof of this fact. Let q = #k and letL | k be
any Galois extension of degree n. Let α ∈ L× be a generator of the multiplicative

group L×. So α has order qn − 1 and NL | k(α) = α1+q+···+qn−1
= α

qn−1
q−1 ∈ k× has

order q − 1, so it generates k×. Thus the norm map NL | k : L× → k× is surjective.
Since L | k is a finite extension of finite fields, it is cyclic, so by Corollary 3.39 we
have Br(L | k) = 0. Since this holds for arbitrary L, we get Br(k) = 0.

3.3.2 Real and Complex Numbers

By Example 3.20, we see that if k is algebraically closed then Br(k) = 0. In
particular, Br(C) = 0.

From Frobenius’ Theorem, it follows that Br(R) ∼= Z/2Z: there is only one
non-trivial finite-dimensional central division algebra over R (the quaternions
H), and it has order two in the Brauer group of R by Corollary 3.10. Another way
to see that Br(R) ∼= Z/2Z is using Corollary 3.39.

3.3.3 Non-Archimedean Local Fields

Let K be a non-Archimedean local field with ring of integers OK , maximal
ideal mK and finite residue field k = OK/mK . We will first follow [21], Section III,
and compute the cohomology of unramified extensions of K.
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Let L be an unramified extension of K, with ring of integers OL. Suppose
first that [L : k] is finite. By Remark 3.13, the norm map

NL |K : O×L → O
×
K

is surjective. Since the Galois group G = Gal(L |K) coincides with the Ga-
lois group of the residue fields, it is cyclic, so by [31], Theorem 6.2.2, we have
Hn(G,O×L ) = 0 for n > 0. Passing to the limit ([31], Theorem 6.11.13), we see
that the same holds even if [L : k] is infinite.

So assume now that L | k is a, possibly infinite, unramified extension. For
any finite subextension M ⊂ L there is a unique extension ordM : M× → Z
of the discrete valuation ordk : k× → Z on k. In particular, for any two finite
subextensions L1, L2 ⊂ Lwe have that the restrictions to L1 ∩L2 of ordL1 : L×1 →
Z and ordL2 : L×2 → Z coincide. So we get a discrete valuation ordL : L× → Z on
L. Then from the exact sequence of G-modules

0 −→ O×L −→ L×
ordL−→ Z −→ 0

where Z is the trivial G-module, we get an isomorphism

ordL : H2(G,L×)
∼→ H2(G,Z).

Consider the exact sequence of trivial G-modules

0 −→ Z −→ Q −→ Q/Z −→ 0;

since Hn(G,Q) = 0 for n > 0 ([31], Corollary 6.5.9) we have that the connection
homomorphism

δ : H1(G,Q/Z)
∼→ H2(G,Z)

is an isomorphism. Since G is topologically cyclic, by [31], 6.11.15 we have a
canonical isomorphism

H1(G,Q/Z)
∼→ Hom(G,Q/Z)

∼→ Q/Z.

In particular, taking L = Kunr to be the maximal unramified extension of K,
we conclude the following.

Lemma 3.41. We have a canonical isomorphism

invunr
K : Br(Kunr |K)

∼→ Q/Z.

It turns out that every central simple algebra over a non-Archimedean lo-
cal field K with finite residue field is split by an unramified extension. See for
example [29], Theorem XII.1 for a cohomological proof. It is also possible to
prove this in a more explicit way, as in [29], Section XII.§2 or [21], Section IV.4.
This second approach has the advantage of giving an explicit description of the
Hasse Invariant Map.

Then we have Br(K) = Br(Kunr |K), and we get the following.
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Theorem 3.42. We have a canonical isomorphism

invK : Br(K)
∼→ Q/Z

called the Hasse Invariant Map of K.

Remark 3.43. The result above shows that every central simple algebra over a
local field k is cyclic, that is it contains a maximal subfield L (which is then a
splitting field) that is a cyclic Galois extension of k. It is possible to give a more
explicit construction of cyclic algebras, which generalizes that of quaternion al-
gebras. See [30], Section 2.5.

3.3.4 Number Fields

Let now K be a number field. For any v ∈ ΩK , we denote by Kv the comple-
tion ofK with respect to v. If v is non-Archimedean, we denote byOv the ring of
integers of Kv.

For v ∈ ΩK non-Archimedean, we have defined in the previous section the
Hasse Invariant Map

invv : Br(Kv)
∼→ Q/Z.

We want to define a similar map for v ∈ ΩK Archimedean. If Kv
∼= C, then

Br(C) = 0 (see Section 3.3.2 above) and we just let invv : Br(C) → Q/Z be the
zero map. If Kv

∼= R, we have a canonical isomorphism Br(Kv) ∼= 1
2
Z/Z, and we

let invv : Br(Kv)→ Q/Z be the composition

Br(Kv)
∼→ 1

2
Z/Z ↪→ Q/Z.

It is possible to show (see the references given below) that if A is a central
simple K-algebra, then A⊗K Kv is split for all but finitely many v ∈ ΩK .

We can prove this easily for quaternion algebras. Let a, b ∈ K× and consider
the quaternion algebra (a, b) overK. For all but finitely many non-Archimedean
v ∈ ΩK , both a and b are units in Ov. This means that b is a norm from the
unramified field extension Kv(

√
a) (Remark 3.13), so (a, b) is split over Kv.

We are now ready to state the main result on the Brauer group of number
fields.

Theorem 3.44. There is an exact sequence of abelian groups

0 −→ Br(K) −→
⊕
v∈ΩK

Br(Kv)
∑

invv−→ Q/Z −→ 0.

Proof. See [21], Chapters VII and VIII or [24], Theorem III.5.8.

Remark 3.45. The statement above is as deep as the main results of Class Field
Theory. There are a few facts that we can deduce from the exact sequence above.
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1. The injectivity of the map on the left is the so called local-global prin-
ciple for central simple algebras, also known as the Albert-Brauer-Hasse-
Noether Theorem: it tells us that a central simple algebra is split over K
(that is, its class in Br(K) is zero) if and only if it is split over each comple-
tion of K.

2. Let a, b ∈ K× and consider the quaternion algebra (a, b) over K. The fact
that

∑
invv ((a, b)⊗K Kv) = 0 is a restatement of Hilbert’s Product formula

for the Hilbert symbol, which in turn is equivalent to the quadratic reci-
procity laws. See [27], Chapter III for the case K = Q.
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Chapter 4

The Brauer Group of a Scheme

As in the case of fields, the Brauer Group of a scheme X can be defined in
two ways. One is more explicit

Br(X) = {Equivalence classes of AzumayaOX-algebras}

and the other is cohomological

Br′(X) = H2
ét(X,Gm)

whereH2
ét(X,Gm) denotes the second étale cohomology group ofX with Gm co-

efficients (see [22], Chapter III). In fact, if X = Spec k is the spectrum of a field,
the two definitions coincide and give back the Brauer Group that we defined in
the previous chapter (see [22], Example II.1.7).

However, for a general scheme X, the two definitions do not always coin-
cide. If X is locally Noetherian, there is a canonical injection Br(X) ↪→ Br′(X)
(Proposition 4.7), which is an isomorphism in some cases (see Proposition 4.10).

As we did in the previous chapter with Galois cohomology, we will make use
of étale cohomology when needed, referring to [22].

4.1 Azumaya Algebras over Local Rings

First of all, we want to extend the definition of central simple algebras over a
field to algebras over local rings.

Let R be a Noetherian local ring with maximal ideal m and residue field k.

Definition 4.1. Let A be an R-algebra that is free and of finite rank as an R-
module. Then A is called an Azumaya algebra if A ⊗R k is a central simple k-
algebra.

There is a more classical definition: a finite and free R algebra A is Azumaya
if and only if the mapA⊗RAop → EndR(A) ∼= Mn(R) sending a⊗a′ to theR-linear
map x 7→ axa′ is an isomorphism. See [22], Propositions IV.1.1 and IV.1.2.

With this definition, many of the results of Section 3.2 can be extended to
the case of local rings. For example, by the classical definition above we deduce
that Azumaya algebras have a rank over R that is a square. We collect some of
these facts in the following proposition. For proofs, see [22], IV.1.

Proposition 4.2. Let R be a Noetherian local ring with maximal ideal m and
residue field k.
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1. The matrix algebra Mn(R) is an Azumaya R-algebra.

2. (Skolem-Noether) Every automorphism of an Azumaya R-algebra is inner.

3. If S is a local R-algebra and A is an Azumaya R-algebra, A⊗R S is an Azu-
maya S-algebra.

4. If A and B are two Azumaya R-algebras, A⊗R B is an Azumaya R-algebra.

5. Any Azumaya algebraA is split by a maximal étale subalgebra; that is, there
is a commutative étale R-subalgebra S ⊂ A of rank n =

√
[A : R] such that

A⊗R S ∼= Mn(S).

Exactly as in the case of central simple algebras, we say that two AzumayaR-
algebrasA andB are Brauer equivalent ifA⊗RMn(R) ∼= B⊗RMm(R) for some n
and m. The set of Brauer equivalence classes of Azumaya algebras forms then a
group, which we call the Brauer Group of R, and denote by Br(R). This is again
a functor on R, by part 3 of the Proposition above.

To conclude this section, we give the following Proposition. Recall that a
Noetherian local ring R is called Henselian if every finite R-algebra is a direct
product of local rings. This is equivalent to the fact that “Hensel’s Lemma holds
for R”, see [22], I.4 for details. In particular, complete Noetherian local rings are
Henselian.

Proposition 4.3. If R is Henselian, the canonical map Br(R) ↪→ Br(k), where k is
the residue field of R, is injective.

Proof. See [22], Proposition IV.1.6.

Corollary 4.4. If R is a complete Noetherian local ring with finite residue field,
then Br(R) = 0.

Proof. The Brauer group of a finite field is zero, see Section 3.3.1.

4.2 Azumaya Algebras over Structure Sheaves

For the rest of this section, let X be a locally Noetherian scheme with struc-
ture sheaf OX . Recall that a collection of morphism of schemes (Ui → X) is
called an étale covering of X if the following conditions are satisfied:

• each Ui → X is étale;
• the (set-theoretic) union of the images of the Ui → X is X.

Definition 4.5. Let A be a (not necessarily commutative) OX-algebra that is a
coherent OX-module. Then A is called an Azumaya algebra if it satisfies one of
the following equivalent conditions:

(i) For every closed point x ∈ X, the stalk Ax is an AzumayaOX,x-algebra.

(ii) For every point x ∈ X, the stalk Ax is an AzumayaOX,x-algebra.



4.2. Azumaya Algebras over Structure Sheaves 43

(iii) For every point x ∈ X, A(x) := Ax ⊗OX,x
k(x) is a central simple algebra

over the residue field k(x) of x.

(iv) A is étale-locally split, that is, there is an étale covering (Ui → X) of X
such that for each iwe haveA⊗OX

OUi
∼= Mri(Ui) for some ri. HereMri(Ui)

denotes the sheaf of ri × ri matrices overOUi
.

For a proof of the equivalence of the conditions above, see [22], Proposition
IV.2.1.

We can now define the Brauer group of a locally Noetherian scheme X. Two
AzumayaOX-algebrasA andB are called Brauer equivalent if there are two non-
zero finitely generated locally freeOX-modules F and G such that

A⊗OX
End(F) ∼= B ⊗OX

End(G).

Here End(−) denotes the sheaf End, defined by

(End(F )) (U) = EndOU
(F|U ,F|U),

see [13], Section II.5.
As in the case of fields, the set of equivalence classes of OX-Azumaya alge-

bras becomes a group under the tensor product, which we denote by Br(X) and
call the Brauer Group ofX (see [22], IV.2). Clearly Br(−) is a contravariant func-
tor.

Remark 4.6. If X = SpecR is the spectrum of a Noetherian local ring, then
Br(X) = Br(R). In particular, Br(k) = Br(Spec k) for any field k.

4.2.1 Relation to Étale Cohomology

As we mentioned, the Brauer group of X is related to the étale cohomology
of X, but in general it is not equal to its second étale cohomology group with
Gm coefficients, as happens in the case of fields. More precisely, we have the
following.

Proposition 4.7. There is a canonical inclusion Br(X) ↪→ H2
ét(X,Gm).

Proof. See [22], Theorem IV.2.5.

This is still enough to draw some conclusions about Br(X) in the general
case, for example the following.

Corollary 4.8. If X has finitely many connected components, Br(X) is torsion.

Proof. See [22], Proposition IV.2.7.

However, we will only be interested in more specific classes of schemes X.
For example, we will almost always be able to use the following facts.

Proposition 4.9. Let X be a regular, integral and locally Noetherian scheme and
let K be its function field. Then the map Br(X) → Br(K) given by the inclusion
of the generic point is injective.
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Proof. See [22], Corollary IV.2.6.

Proposition 4.10. If X is a regular and quasi-projective variety over a field, then
Br(X) = H2

ét(X,Gm).

Proof. See [25], Corollary 6.6.19.

4.3 The Brauer-Manin Obstruction

For this section, we let K be a number field with ring of integersO.
The idea of using the Brauer group of a variety over a global field to explain

the failure of the local-global principle was first introduced by Manin in [20].
Let X be a K-scheme, L |K a field extension and P : SpecL → X be an L-

point of X. By functoriality, this induces a map Br(X) → Br(L), which we call
evaluation at P and denote by evP . If A ∈ Br(X), we will also write A(P ) for
evP (A).

Lemma 4.11. Let X be a variety over K. If (xv) ∈ X(AK) and A ∈ Br(X), then
A(xv) = 0 in Br(Kv) for all but finitely many v.

Proof. By [25], Corollary 6.6.11 there are a finite set S ⊂ Ω∞K , anOS-model X for
X and anA ∈ Br(X ) that maps toA under the map Br(X )→ Br(X) given by the
inclusion of X as the generic fiber of X (see also Section 1.2). We may assume
that xv ∈ X (Ov) for all v 6∈ S. For v 6∈ S the following diagram commutes

Br(X ) Br(Ov)

Br(X) Br(Kv)
evxv

where the map Br(X ) → Br(Ov) is obtained by applying the functor Br to the
map xv : Ov → X . By Corollary 4.4 the group Br(Ov) is trivial, so we haveA(xv) =
0 for all v 6∈ S.

Let now A ∈ Br(X). Thanks to the Lemma above, we can extend the exact
sequence of Theorem 3.44 to a commutative diagram

X(K) X(AK)

0 Br(K)
⊕

v Br(Kv) Q/Z 0

A(−) ∑
v invv

and we can give the following definition.
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Definition 4.12. For A ∈ Br(X) we define

X(AK)A :=

{
(xv) ∈ X(AK) |

∑
v

invv A(xv) = 0

}

and

X(AK)Br :=
⋂

A∈Br(X)

X(AK)A.

The set X(AK)Br is called the Brauer set of X. If S is a finite set of places of K,
we also define X(AS

K)Br (see Section 2.3.1) to be the image of X(AK)Br under
the projection map X(AK)→ X(AS

K).

By Theorem 3.44, we haveX(K) ⊂ X(AK)Br. Thus, if we haveX(AK) 6= ∅but
X(AK)Br = ∅ and soX(K) = ∅, we say that there is a Brauer-Manin obstruction
to the existence of rational points ofX.

Thanks to the following results, the Brauer group can also be used to deter-
mine the failure of Strong Approximation for X.

Proposition 4.13. Let Kv be a local field, X a variety over Kv and A ∈ Br(X).
Then the map A(−) : Br(X)→ Br(Kv) is locally constant.

Proof. See [25], Proposition 8.2.9.

Corollary 4.14. Let X be a variety over K and A ∈ Br(X). Then the sets X(AK)A

and X(AK)Br are closed in X(AK).

Since, as we said, we haveX(K) ⊂ X(AK)Br, we see that the closureX(K) of
the set of rational points is contained in X(AK)Br. Thus, if X(AK)Br 6= X(AK)
Strong Approximation fails for X, and we say that there is a Brauer-Manin ob-
struction to Strong Approximation on X. Similarly, if X(AS

K)Br 6= X(AS
K) we

say that there is a Brauer-Manin obstruction to Strong Approximation away from
S.

Remark 4.15. In general, it is of course possible that there is no Brauer-Manin
obstruction (to the existence of rational points or to Weak/Strong Approxima-
tion), but that the local-global principle still fails.

There are however other kinds of obstructions, finer the the Brauer-Manin
one, that can explain the failure of the local-global principle. See for example
[25], Chapter 8.
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Chapter 5

The Case of Quadric Surfaces

We are finally ready to approach the core of this thesis: describing the fail-
ure of Strong Approximation away from infinity on punctured affine cones over
quadric surfaces.

We will follow very closely the article [3] by Bright and Kok, and generalize
the result to projective quadrics over number fields. In fact, one could argue
that there is actually nothing new in this chapter that wasn’t already proved in
[3].

After a general description of the Brauer-Manin obstruction mentioned above,
we deduce the result of [3] as a particular case. With this method, we can also
explain an example found by Lindqvist in [16].

5.1 Failure of Strong Approximation on Affine Cones

For this section, we let K be a number field with ring of integersO. As usual,
we will denote by ΩK the set of all normalized valuations of K. For v ∈ ΩK , we
let Kv be the completion of K with respect to v. If v is non-Archimedean, we let
Ov be the ring of integers of Kv and kv the residue field.

Let Y ⊂ P3
K be a smooth projective quadric surface, defined by the equation

F (X0, X1, X2, X3) = 0 (5.1)

for some homogeneous F ∈ O[X0, X1, X2, X3] of degree 2.
Let Y ⊂ P3

O be the model for Y described in Example 1.7.
Let X be the punctured affine cone over Y , that is the complement of the

point (0, 0, 0, 0) in the affine scheme SpecK[X0, X1, X2, X3]/(F ).
Recall that for any affine scheme S = SpecR, any projectiveR-scheme V is of

the form ProjB for some gradedR-algebraB (see [18], Sections 2.3.3 and 3.3.3).
If V is of finite type, we can take B = R[X0, . . . , Xn]/I for some homogeneous
ideal I ⊂ R[X0, . . . , Xn]. Then the scheme C(V ) = SpecB \ V (B+), where B+ =⊕

d>0Bd is the positive-degree part of B, is called the punctured affine cone over
V . It is the complement of theR-point (0, 0, 0, 0) in SpecB, and there is a natural
projection map p : C(V )→ V .

Let X ⊂ P3
O be the punctured affine cone over Y . Then X is an O-model

for X. By abuse of notation, we denote by π both projection maps X → Y and
X → Y ; in fact, the former is the restriction of the latter to the generic fibers.



48 Chapter 5. The Case of Quadric Surfaces

Using the procedure described in Section 2.2.2, we can check whether (5.1)
is everywhere locally soluble, that is if Y (Kv) 6= ∅ for all v ∈ ΩK . If it is not, we
can conclude immediately that Y (K) = ∅. So we assume that Y (Kv) 6= ∅ for all
v ∈ ΩK . By Theorem 2.4, this implies that Y (K) 6= ∅, thus in particularX (O) 6= ∅,
so we can fix P ∈ X (O), which we can write as P = (P0, P1, P2, P3) ∈ O4. This
also defines a K-point of X. Let moreover gP ∈ O[X0, X1, X2, X3] be a linear
form defining the tangent hyperplane to X at the point P . Notice that gP also
defines the tangent hyperplane to Y at π(P ).

Let ∆Y ∈ K× be the discriminant of Y (see Section 1.4). In what follows we
will be interested in the class of ∆Y inK×/(K×)2, which is invariant under linear
transformations. Let AP be the quaternion algebra (∆Y , gP ) over the function
field K(X) of X. We have the following result.

Proposition 5.1. The class of the quaternion algebra AP in BrK(X) belongs to
BrX. The quotient group BrX/BrK is generated by AP . It is trivial if and only if
∆Y is a square in K.

Proof. See [3], Lemma 3.1.

We are now going to evaluate the Hasse invariant of the algebra AP (Q), for
Q ∈ X(Kv), at the different places v of K. The following simple Lemma will be
useful.

Lemma 5.2. Let v be a place of K and Q ∈ X(Kv). If ∆Y is a square in Kv, then
AP (Q) is split over Kv.

Proof. The point Q is a map of K-schemes Q : SpecKv → X. This factors as
Q′ : SpecKv → X ×K Kv

X ×K Kv

SpecKv X

Q′

Q

and passing to the Brauer groups this gives a commutative diagram

BrX ×K Kv

BrKv BrX

evQ′

evQ

and since AP is split in BrXKv ⊂ BrKv(X), we have that AP (Q) is split.

5.1.1 Archimedean Places

Let v ∈ ΩK be an Archimedean place of K. If v is complex, that is, if Kv
∼= C,

then Br(Kv) = 0, so invv AP (Q) = 0 for allQ ∈ X(Kv), and there is nothing to do.
So assume that v is a real place ofK, that is,Kv

∼= R. If the image of ∆Y inKv

is positive, then by Lemma 5.2 we have invv AP (Q) = 0 for every Q ∈ X(Kv).
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If there is at least one real place v ∈ ΩK such that ∆Y < 0 in Kv, we have the
following.

Proposition 5.3. Assume v0 ∈ ΩK is Archimedean and such that Kv0
∼= R and

∆Y < 0 in Kv0 . Then the restriction of the projection map X(AK)Br → X(A∞K ) is
surjective. In particular, there is no Brauer-Manin obstruction to Strong Approx-
imation away from infinity on X.

Proof. Let Q = (Qv)v∈Ω∞K
∈ X(A∞K ) be a finite adelic point of X. Choose also,

for every Archimedean place v of K, a point Qv ∈ X(Kv). If
∑

v invv AP (Qv) = 0,
then Q′ = (Qv)v∈ΩK

is in the Brauer set X(AK)Br and maps to Q ∈ X(A∞K ), so we
are done.

Assume then that
∑

v invv AP (Qv) = 1
2

, and consider the quaternion alge-
bra AP (Qv0) = (∆Y , gP (Qv0)) over Kv0 . Since ∆Y < 0, this is split if and only if
gP (Qv0) > 0. Notice that−Qv0 ∈ X(Kv) as well, and that by linearity gP (−Qv0) =
−gP (Qv0), so that replacing Qv0 by −Qv0 in Q′ = (Qv)v∈ΩK

we change the Hasse
invariant ofAP (Qv0), thus the sum above becomes zero. As before,Q′ = (Qv)v∈ΩK

is now in the Brauer set X(AK)Br and maps to Q ∈ X(A∞K ), so we are done.

Remark 5.4. If L |K is an extension of global fields and ϕ is a real place ofK that
extends to a complex, non-real, place ψ of L, some authors say that ϕ ramifies
in L. Thus, the Proposition above can be rephrased as “If there is a real place of
K that ramifies in L, there is no Brauer-Manin obstruction to Strong Approxi-
mation away from infinity on X”.

We will see that, also for the finite places of K, ramification plays a key role
in determining the Brauer-Manin Obstruction.

5.1.2 Finite Places

We divide the set of finite places v of K into four subsets, according to the
behaviour of Y over Kv.

First of all, we letQ be the set of finite places ofK such that ∆Y is a square in
Kv. By Lemma 5.2, if v ∈ Qwe have invv AP (Q) = 0 for every Q ∈ X(Kv)

Let R be the set of finite places v ∈ ΩK \ Q that are not in Q and such that
Kv(
√

∆Y ) |Kv is ramified. This is a finite set: a prime p ⊂ O ramifies in K(
√

∆Y )
if and only if p divides the discriminant d of the extension, which is an ideal of
O ([23], Theorem II.2.12). We callR the set of ramified places.

LetB be the set of finite places v, not inQ or inR, such that either the residue
field kv has characteristic 2, or the reduction of Y modulo v is singular. We will
call this the set of bad places. The set B is also finite: for a finite prime v, the
quadric Ỹ = Y×Okv can be singular only if ∆Ỹ = (∆Y mod v) ∈ kv is zero, which
happens only for the finitely many primes v that divide ∆Y . This fact actually
holds in general: if V is a scheme of finite presentation over an integral scheme
S, such that the generic fiber is smooth, then there is an open neighbourhood
U ⊂ S of the generic fiber such that V ×S U is smooth. See [25], Theorem 3.2.1.

Finally, let G be the set of finite places of K that are not in any of the three
setsQ,R or B defined above. We will call it the set of good places.
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Before describing the beheaviour of the algebra AP at the four subsets of
places, we note the following fact, that will be useful later.

Remark 5.5. Let v be a finite place ofK and assume thatKv(
√

∆Y ) |Kv is unram-
ified. By Remark 3.13, every λ ∈ O×v is the norm of some element in Kv(

√
∆Y )×.

Thus for any Q ∈ X (Ov) and any λ ∈ O×v , by Proposition 3.6(4) we have

invv AP (λQ) = invv(∆Y , λgP (Q)) = invv AP (Q) + invv(∆Y , λ) = invv AP (Q).

In other words, the fact that AP (Q) is split or not depends only on the image of
Q in Y (Kv).

Assume instead that Kv(
√

∆Y ) |Kv is ramified. Then it still holds that

invv AP (λQ) = invv(∆Y , λgP (Q)) = invv AP (Q) + invv(∆Y , λ)

but, since the norm group N
(
O×
K(
√

∆Y ),v

)
has index two in O×v , we see that the

algebra (∆Y , λ) is split over Kv for half of the values of λ ∈ O×v .
More precisely, assume that char kv 6= 2. Notice that (∆Y , λ) is split over Kv if

and only if the class λ̃ ∈ kv of λ is a square in the residue field. In fact, assume
λ = a2−∆Y b

2 is a norm fromKv(
√

∆Y ). Since the extension is ramified, we have
∆Y = 0 in kv, so λ̃ = ã2 is a square. Conversely, if λ̃ is a square in kv, then λ is a
square in Kv by Proposition 3.11.

Geometrically, half of the points of X on the line through Q and the origin
split the algebra AP and half don’t.

Ramified Places

Let v ∈ R and let Q ∈ X (Ov). By the second Remark 5.5, half of the points Q′

on the line through Q and the origin (those that map to π(Q) in Y (Kv)) are such
that the algebra AP (Qv) is split. Then we define the subsets

U0
v := {Q ∈ X (Ov) | invv AP (Q) = 0} and U

1
2
v = {Q ∈ X (Ov) | invv AP (Q) = 1

2
}.

Clearly, in this case both U0
v and U

1
2
v are open (Proposition 4.13) and not empty,

they are disjoint and X (Ov) = U0
v ∪U

1
2
v . We will use these sets to show that there

is a Brauer-Manin obstruction to Strong Approximation away from infinity.

Remark 5.6. If K = Q, there is alway some finite prime v such that Qv(
√

∆Y ) |Q
is ramified, thus the set R is not empty. However, if the class group of K is not
trivial, it may happen that the extension Kv(

√
∆Y ) |Kv is unramified for all v.

See Example 5.12 below for a case withR = ∅.

Bad Places

Let v ∈ B be one of the bad places. Recall that we assumed thatKv(
√

∆Y ) |Kv

is unramified for such a v. We define

V 0
v := {Q ∈ X (Ov) | invv AP (Q) = 0} and V

1
2
v = {Q ∈ X (Ov) | invv AP (Q) = 1

2
}.
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In general, we can’t say much about these sets, except that they are both
open and closed in X (Ov). Since their union is the whole X (Ov), at least one of
the two is always going to be non-empty.

By Remark 5.5, we also know that the splitting behaviour of AP (Q) depends

only on the image of Q in Y (Kv). Thus, each of V 0
v and V

1
2
v is the preimage of its

projection in Y (Kv).

Good Places

Let v ∈ G. Recall that, by definition of the set G, the reduction Ỹ = Y ×O kv of
Y modulo v is a smooth quadric and that Kv(

√
∆Y ) |Kv is unramified.

Following [3], we first prove a Lemma.

Lemma 5.7. If Q ∈ X (Ov) is such that π(Q) 6≡ π(P ) (mod v), then invv AP (Q) =
0.

Proof. The proof is taken from [3], Lemma 3.3.
If gP (Q) ∈ O×v , then it is a norm fromKv(

√
∆Y )×, so invv AP (Q) = 0. Suppose

then that gP (Q) ≡ 0 (mod v), and let P̃ , Q̃ ∈ Ỹ (kv) be the reductions of the
points π(P ), π(Q) ∈ Y (Kv). Notice that the reduction of gP modulo v defines the
tangent plane of Ỹ at P̃ . By Proposition 1.12, we have that Ỹ ∩ {gP = 0} consists
of two lines conjugate over kv(

√
∆Y ), so the only kv-point at which gP vanishes

is P̃ , implying π(Q) ≡ π(P ) (mod v), against the assumption.

At this point, in the example by Bright and Kok, the authors prove that, for
any two points P, P ′ ∈ X (O), the two quaternion algebras AP and AP ′ lie in the
same class in BrX, and not just in BrX/BrK ([3], Lemma 3.4). Unfortunately,
this is not true in general, as the following example shows.

Example 5.8. Let Y ⊂ P3
Q be the smooth quadric surface defined by the equa-

tion

X2
0 + 7X2

1 = 11X2
2 + (7× 11× 3)X2

3 .

We can take Y ⊂ P3
Z to be the projective Z-scheme defined by the equation

above. Consider the points P = (2, 1, 1, 0) and P ′ = (4, 13, 5, 2) in X (Z), with
respective linear forms defining tangent hyperplanes at P and P ′

gP (X0, X1, X2, X3) = 2X0 + 7X1 − 11X2,

gP ′(X0, X1, X2, X3) = 4X0 + 91X1 − 55X2 − (11× 7× 3× 2)X2
3 .

Let moreover Q ∈ X (Z) be the point (1, 5, 4, 0). We are going to show that the
algebras AP (Q) and AP ′(Q) have different invariants at v = 2, so the class of AP
and AP ′ in BrX is different.

In fact, we haveAP (Q) = (3,−7) andAP ′(Q) = (3, 239). Since−7 ≡ 1 (mod 8)
and −239 ≡ 1 (mod 8) are squares in Q2, we have that AP (Q) = (3,−7) ∼= (3, 1)
and AP ′(Q) = (3, 239) ∼= (3,−1) over Q2. By Example 3.15, we see that AP (Q) is
split, while AP ′(Q) is not, and we conclude.
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However, any two quaternion algebras of this form are going to give the same
local invariant at the good places.

Lemma 5.9. Let v be a finite place of K that is not in B or in R. Let P ′ ∈ X (O),
let gP ′ ∈ O[X0, X1, X2, X3] be a linear form defining the tangent hyperplane to X
at P ′ and let AP ′ = (∆Y , gP ′) be the associated quaternion algebra. Then we have
invv AP (Q) = invv AP ′(Q) for all Q ∈ X (Ov).

Proof. If v ∈ Q, this follows from Remark 5.5.
Let then v ∈ G. By Proposition 1.13 there is Q̃ in the reduction of Y modulo v

distinct from the reductions of π(P ) and π(P ′). Since v 6∈ B this point is smooth
and by Corollary 2.7 we can lift it to some Q ∈ X (Ov). Then by Lemma 5.7 we
have invv AP (Q) = 0 = invv AP ′(Q).

But by Proposition 5.1, the difference AP − AP ′ lies in BrK, so it is constant.
Therefore invv AP (Q) = invv AP ′(Q) for any Q ∈ X (Ov).

Corollary 5.10. For any v ∈ G we have invv AP (Q) = 0 for all Q ∈ X (Ov).

Proof. If π(Q) 6≡ π(P ) (mod v), the conclusion follows from Lemma 5.7, so as-
sume that π(Q) ≡ π(P ) (mod v). By Propostion 1.13, the reduction of Y mod-
ulo v has a point P̃ ′ different from the reduction of P . By weak approxima-
tion on Y , this point P̃ ′ lifts to some P ′ ∈ X (O), and we can choose a linear
form gP ′ ∈ O[X0, X1, X2, X3] defining the tangent hyperplane to X at P ′ and
let AP ′ = (∆Y , gP ′) be the associated quaternion algebra. Since π(Q) 6≡ π(P ′)
(mod v), by Lemma 5.7 we have invv AP ′(Q) = 0, and we conclude using Lemma
5.9.

5.1.3 The Obstruction

Assume now that Kv(∆Y ) |Kv is ramified for at least one finite place v ∈ Ω∞K ,
so thatR 6= ∅. Then there exits at least one element

ε = (εv) ∈ Π :=
∏
v∈R

1
2
Z
Z
×
∏
v∈B

1
2
Z
Z

such that the following conditions are satisfied:

(i) for every v ∈ B we have V εv
v 6= ∅;

(ii) we have
∑

v∈R∪B ev = 1
2

.

We let E ⊂ Π be the set of ε ∈ Π satisfying the conditions (i) and (ii). Then we
can define a set

U :=
⋃
ε∈E

U ε ⊂ X(A∞K )

where

U (εv) :=
∏

v∈Q∪G

X (Ov)×
∏
v∈R

U εv
v ×

∏
v∈B

V εv
v .
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Then U is an open subset of X(A∞K ), which is non-empty and does not meet
X(A∞K )Br, proving that there is a Brauer-Manin obstruction to strong approxi-
mation away from infinity on X. We have proved the following.

Theorem 5.11. Let Y ⊂ P3
K be a smooth projective quadric surface over a number

field K and let X be the punctured affine cone over Y . Assume that Y has at least
one rational point. Assume moreover that ∆Y is not a square in K and that the
extension Kv(

√
∆Y ) |Kv is ramified for at least one finite place v of K. Then there

is a Brauer-Manin obstruction to Strong Approximation away from infinity onX
if and only if ∆Y is positive in Kv for all the real places v of K.

Example 5.12. The ramification of the extension K(
√

∆Y ) |K is necessary. In
fact, we will now give an example where the extension is everywhere unramified,
and there is no Brauer-Manin obstruction.

Let K = Q(
√
−17) and consider the quadric Y given by

X2
0 +X2

1 +X2
2 −X2

3 = 0

and let Y be the projective O-scheme defined by the equation above. Its dis-
criminant is ∆Y = −1, which is not a square in K, and it can be checked that
the extension K(

√
−1) |K is everywhere unramified. It’s easy to see that X has

integral points: for example P = (1, 0, 0, 1), Q = (0, 1, 0, 1) and R = (0, 0, 1, 1).
The only prime ideal ofK above (2) is v2 = (2, 1+

√
−17), and we have v2 ∈ Q:

in fact, 17 is a square in Q×2 (Proposition 3.11), so it is a square in K×v2 , and we
have−1 = 17/(

√
−17)2 ∈ (K×2 )2. Since ∆Y ∈ O×, we have that the reduction of Y

modulo any prime ofK is a smooth quadric. Then we conclude that B = R = ∅.
Following the discussion in the previous section, we see that for any P ∈ X (O),
any v ∈ ΩK and any Q ∈ X (Ov) we have invv AP (Q) = 0. So there is no Brauer-
Manin obstruction to Strong Approximation away from infinity on X.

5.2 The Example of Bright and Kok

In [3], Bright and Kok consider the polynomial F ∈ Z[X0, X1, X2, X3] given by

F (X0, X1, X2, X3) = X2
0 + 47X2

1 − 103X2
2 − (17× 47× 103)X2

3 . (5.2)

It can be checked, for example via the procedure descibed in Section 2.2.2,
that Y (Qp) 6= ∅ for every prime p ≤ ∞. Let X and Y be as above. Moreover, we
let Y be the projective Z-scheme defined by 5.2, which is a Z-model for Y , and
X be the punctured affine cone over Y , which is a Z-model for X.

We have ∆Y = 17 > 0, and clearly Q17(
√

17) |Q17 is ramified, so by Theorem
5.11 there is a Brauer-Manin obstruction to Strong Approximation away from
infinity on the punctured affine cone X.

With the notation introduced above, we haveR = {17} and {2, 47, 103} ⊂ Q,
so B = ∅. Then the subset U ⊂ X(A∞K ) defining the obstruction is

U =
∏
p6=17

X (Zp)×
{
Q ∈ X (Z17) | inv17AP (Q) =

1

2

}
.
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Note that the only non-smooth points of X ×Z F17 are those of the form
(0, 0, 0, a), and that they don’t lift to points of X (Z17), so the points of X (F17)
that lift to X (Z17) are precisely the smooth ones.

So we can give a very precise description of the obstruction in this case: for
every smooth point Q̃ ∈ X (F17), exactly half of the scalar multiples of Q̃ lie in
the image of U , so they do not lift to coprime integer solutions of (5.2). Notice
in fact that if Q̃ is smooth then gP (Q) ∈ Z17, and it is a norm from Q(

√
17) if and

only if its reduction modulo 17 is a square in F17 (see Remark 5.5); so inv17AP (Q)
only depends on the reduction Q̃ of Q modulo 17.

5.3 The Example of Lindqvist

In [16], Lindqvist remarked that certain quadric equations don’t have the ex-
pected number of primitive integer solutions, if some congruence conditions
are imposed. In particular, she considers the following example.

Let p and q be distinct prime numbers congruent to 1 modulo 8. Consider
the quadric Y ⊂ P3

Q given by the equation

X2
0 − pqX2

1 −X2X3 = 0 (5.3)

and let Y,X,Y ,X be as above (Y is the projective Z-scheme defined by 5.3). No-
tice that ∆Y = pq.

Let k ∈ Z be an integer not divisible by p or q, and assume that k is a square
modulo p, but not modulo q. For example, we could take p = 41, q = 17 and
k = 10. Consider the point k̃ = (k, 0, k, k) ∈ X (Z/pqZ). In [16], Lindqvist showed
that there is no primitive integer solution of (5.3) congruent to k̃ modulo pq, i.e.
that k̃ doesn’t lift to a point of X (Z). We are going to explain this as a failure of
Strong Approximation on X, using Theorem 5.11.

With our usual notation, we have R = {p, q} and B = ∅, because 2,∞ ∈ Q,
since p ≡ q ≡ 1 (mod 8) and pq > 0.

Consider the point

P = (1, 1, 1, 1− pq) ∈ X (Z)

and the linear form giving the tangent space at P

gP (X0, X1, X2, X3) = 2X0 − 2pqX1 − (1− pq)X2 −X3

that we can use to define our algebra AP = (pq, gP ).
Consider now any finite adelic point α = (αv) ∈ X(A∞Q ) such that αp is a lift

of the reduction of k̃ modulo p and αq is a lift of the reduction of k̃ modulo q.
Then lifting α to an integer point X is equivalent to finding a primitive integer
solution to (5.3) congruent to k̃ modulo pq.

Again invpAP (αp) and invq AP (αq) only depend on the classes of αp modulo p
and of αq modulo q respectively. So we only need to compute the invariants at p
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and q of

AP (k) =(pq, 2k − (1− pq)k − k) = (pq, pqk) =

=(q, p)⊗2 ⊗ (p, p)⊗ (q, q)⊗ (pq, k) = (p, p)⊗ (q, q)⊗ (pq, k).

Since p ≡ q ≡ 1 (mod 4), we have that−1 is a square modulo p and modulo q, so
invp(a, a) = invq(a, a) = 0 for any a ∈ Q×.

On the other hand invp(pq, k) = 0 (because k is a square mod p, so it is a
square in Qp) while invq(pq, k) = 1

2
. In fact, if k were a norm form Qq(

√
pq), it

would be of the form k = a2 − pqb2 for some integers a, b. But then it would be a
square mod q, against our assumption.

We conclude that, for our choice of α ∈ X (A∞Q ), we have invv AP (α) = 0 if
and only if v 6= q. Thus ∑

v

invv AP (α) =
1

2

showing that α can’t lift to an integer point of X.
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