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Introduction

This thesis consists of four research articles that treat different aspects of Kummer theory for
commutative algebraic groups, with particular emphasis on explicit and effective results. To
understand the motivation behind the study of this topic and what we are trying to achieve,
we have to take a step back and see which aspects of classical Kummer theory we are trying to
generalize to algebraic groups.

Kummer theory

If n is a positive integer and K is a field of characteristic coprime to n we may consider, for any
non-zero α ∈ K, the set n

√
α of all elements β in a fixed algebraic closure K of K such that

βn = α. In other words, n
√
α is the set of all n-th roots of α. Given any n-th root β0 of α,

all the others are of the form ζβ0 for some n-th root of unity ζ ∈ K, that is an element such
that ζn = 1. The field generated over K by all n-th roots of α is a Galois extension of K which
contains the n-th cyclotomic field, that is the field generated over K by all n-th roots of unity.
This remains true if we replace α by a finitely generated subgroup A of the multiplicative group
K×, and we consider the set n

√
A = {β ∈ K | βn ∈ A}. Roughly speaking, classical Kummer

theory is the study of this kind of field extensions.

The most classical result in Kummer theory is the classification of the abelian extensions of
exponent dividing n of a field K which contains all n-th roots of unity and whose characteristic
does not divide n. Indeed, a bijection between the set of such extensions, contained in a fixed
algebraic closure K, and the set of subgroups of K× that contain (K×)n is obtained by mapping
L to K× ∩ (L×)n, see for example [Lan02, Theorem VI.8.2].

Kummer theory has interesting applications in studying certain density problems: if α is a
non-zero element of a number field K, then the density of primes p of K such that the multiplica-
tive order of α modulo p is coprime to some fixed prime `, or has a prescribed `-adic valuation,
can be expressed in terms of the degrees of the cyclotomic-Kummer extensions K(ζ`n , `

n√
α) for

all n > 0, where ζ`n is a root of unity of order `n. See [Per15] for the case we have just described
and [DP16, PS19] for a generalization to finite rank sugroups of K×. These problems are closely
related to Artin’s primitive root conjecture, as explained for example in [Mor12].

Computing the degrees of infinitely many field extensions might seem an arduous task. How-
ever, the following is known (for a direct proof, see [PS19, Theorem 1.1]): if A is a subgroup
of K× of finite rank r, then there is a constant C > 0 such that for every positive integer n the
ratio between nr and the degree [K( n

√
A) : K(ζn)] divides C. This result can be made effective,

see [PST20a, Theorem 1.2], and the results of [PST20b] provide, for the case K = Q, an algo-
rithm whose output is a finite formula for these degrees. This algorithm has been implemented
in SageMath, see [Tro19].

9
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Algebraic groups

So far we have only discussed Kummer theory in the classical sense, but these concepts can be
generalized as follows. Let K be a field, say for simplicity of characteristic zero, fix an algebraic
closure K of K and let G be a commutative algebraic group over K. If S is a subset of G(K),
the field extension of K generated by S is the subfield of K obtained by adjoining to K the
coordinates of the points of S. More precisely, identifying every x in S with a morphism of
schemes specK → specK(x), we have a collection of morphisms K(x) → K as x varies in S,
and the compositum of the images of these morphisms is by definition K(S).

Let now A ⊆ G(K) be a finitely generated subgroup. For any positive integer n we may
consider the subset n−1A = {P ∈ G(K) | nP ∈ A}. Extensions of K of the form K(n−1A)
are the object of study of Kummer theory for commutative algebraic groups. As one can see
by taking G = Gm, the multiplicative group over K, this theory is a direct generalization
of classical Kummer theory. Even in this generality, Kummer extensions have many of the
interesting properties of their classical counterparts. For example K(n−1A) is a Galois extension
of K that contains the n-torsion field of G, that is the field extension of K generated by all
n-torsion points of G(K), and it is Galois and abelian over this field. Torsion fields are the direct
generalization of cyclotomic fields, and many results on Kummer extensions can be deduced from
properties of these fields.

If K is a number field, the density problem mentioned above can be stated mutatis mutandis
in this more general context, and it is still related to the degrees of Kummer extensions. See
[Pin04] for a discussion in the case of abelian varieties and [Per08, Per11] for the product of an
abelian variety and a torus. This motivates the study of the degrees of Kummer extensions in
the general context. In his foundational paper [Rib79], Ribet proved the following result: if G is
the product of an abelian variety and a torus and A ⊆ G(K) is a free Z-module of rank r with
a basis over Z of points linearly independent over EndK(G), there exists a positive integer C
such that the ratio between nrs and the degree [K(n−1A) : K(G[n])] divides C for every positive
integer n. Here s is the unique positive integer such that G(K)[n] ∼= (Z/nZ)s for every n > 1.
See also [Ber88, Théorème 5.2] and [Hin88, Lemme 14]. The papers collected in this thesis are
devoted to making this result more effective, trying to express the constant C in terms of known
quantities related to the torsion fields of G.

Effective results for elliptic curves

The first two papers, written in collaboration with Lombardo, focus on the case of elliptic curves.
Assume that G is an elliptic curve over a number field K and fix an algebraic closure K of K.
Fix moreover a point α ∈ G(K). In [JR10] Jones and Rouse proved that for every prime `,
under some assumption on α and with a small exception for the prime 2, the surjectivity of the
`-adic Galois representation associated with G implies the maximality of the Kummer extensions
K(n−1α) over K(G[n]) if n is a power of `. See [JR10, Theorem 5.2] for the non-CM case and
[JR10, Theorem 5.8] for the CM case. Two questions, suggested by Perucca, arose: If the Galois
representation is not surjective, can we describe, or at least bound, the failure of maximality of
the Kummer extensions in terms of the failure of maximality of the Galois representations? Can
these results be generalized to the case where n is any positive integer?

The first paper presented here [Chapter 1] aims at answering these questions. The main
theorem [Chapter 1, Theorem 1.1] provides a positive answer, but only under the assumption
that EndK(G) = Z. This theorem is an effective version of the classical result by Ribet in the case
of a group G generated by a single point α, and it shows that the constant C mentioned above can
be taken to depend only on properties of the `-adic representations, for all the different primes
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`, and other effectively computable quantities associated with G. Examples that demonstrate
the inapplicability of these methods to the CM case are provided in [Chapter 1, Section 6]. The
second main theorem [Chapter 1, Theorem 1.2] shows that over the field Q there exists a uniform
version of this result under the assumption that the point α is not divisible in G(Q)/G(Q)tors –
that is, that there is no β ∈ G(Q) such that α equals nβ + τ for some integer n > 1 and some
τ ∈ G(Q)tors.

The goal of the second paper with Lombardo [Chapter 2] is to make the aforementioned result
[Chapter 1, Theorem 1.2] explicit by finding an actual numerical value for the constant C, see
[Chapter 2, Theorem 6.5]. These results have been achieved by giving uniform bounds to other
interesting quantities related to the Galois representations of G. A notable example of such a
quantity are the exponents of the cohomology groups of Gal(Q(G(Q)tors) | Q) with coefficients
in the torsion subgroups of G, regarded as Galois modules. Bounds for similar quantities have
been found independently by Cerchia and Rouse [CR21].

A technical framework for general Kummer theory

Some of the explicit results mentioned above depend on properties of Galois representations that
are known in an effective form only for elliptic curves, but the methods used to show that the
degrees of Kummer extensions are related to these quantities do not. In the third article reported
here [Chapter 3] this is made clear by conceptualizing the theoretical background in a framework
that is applicable to any commutative algebraic group over K that satisfies EndK(G) = Z. The
methods used in this work are inspired by results of Palenstijn [Pal04, Pal14] and by discussions
with Lenstra and Stevenhagen. As an application, the results of [Chapter 1] and [Chapter 2] are
extended to groups A of rank higher than 1.

So far we have not yet successfully tackled the case when the endomorphism ring of G is
larger than Z, and it seems that our methods need a substantial refinement to be applied in
that case. In his thesis [JP21], Javan Peykar addresses this problem in the case of elliptic curves
with complex multiplication by taking A ⊆ G(K) to be an EndK(G)-module, and considering
the modules of “division points” by a Steinitz ideal. Even if with some technical limitation, this
method is very successful.

Motivated by this approach, the last paper in this thesis [Chapter 4] is mostly devoted to the
study of purely algebraic properties of division modules over general rings. The Steinitz ideals
used by Javan Peykar are replaced by ideal filters, and a generalization of the classical notion
of injectivity, which to the author’s knowledge is new, is provided. A notion of (J, T )-extension,
where J is a fixed ideal filter and T a suitable R-module, generalizes the modules of division
points. The properties of these objects are then studied with a category-theoretical point of view
before generalizing some results on their automorphism groups that have appeared in the less
general settings of [Pal04], [Pal14] and [JP21].

This long digression in commutative algebra bears in the end its fruits: the theory so con-
structed, which generalizes that of [Chapter 3], is finally applied to unify and generalize the
results of [Chapter 1] and [JP21], showing that the two apparently different approaches are ac-
tually just different realizations of a more general theory. The degree of generality used in this
paper opens the door to applications to higher-dimensional abelian varieties and other classes of
commutative algebraic groups.
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Samenvatting

Dit proefschrift bestaat uit vier onderzoeksartikelen die verschillende aspecten van de Kum-
mertheorie voor commutatieve algebräısche groepen behandelen, met bijzondere nadruk op ex-
pliciete en effectieve resultaten. Om de motivatie achter de studie van dit onderwerp en onze
doelen te begrijpen, moeten we een stap terug doen en kijken welke aspecten van de klassieke
Kummertheorie we proberen te generaliseren naar algebräısche groepen.

Kummertheorie

Als n een positief geheel getal is en K een lichaam van karakteristiek copriem met n, kunnen
we voor elke α 6= 0 in K de verzameling n

√
α beschouwen van alle elementen β in een vast

gekozen algebräısche afsluiting K van K zodanig dat βn = α. Met andere woorden, n
√
α is

de verzameling van alle n-de wortels van α. Zij b0 een n-de wortel van α, dan hebben alle
andere wortels de vorm ζβ0 voor een n-de eenheidswortel ζ ∈ K, dat wil zeggen een element
zodanig dat ζn = 1. Het lichaam voortgebracht over K door alle n-de wortels van α is een
Galoisuitbreiding van K die het n-de cyclotomische lichaam bevat, dat wil zeggen het lichaam
voortgebracht over K door alle n-de eenheidswortels. Dit blijft waar als we α vervangen door
een eindig voortgebrachte ondergroep A van de multiplicatieve groep K×, en we de verzameling
n
√
A = {β ∈ K | βn ∈ A} beschouwen. De klassieke Kummertheorie is grofweg de studie van dit

soort lichaamsuitbreidingen.

Het meest klassieke resultaat in de Kummertheorie is de classificatie van de abelse uitbreidin-
gen met exponent die n deelt van een lichaam K dat alle n-de eenheidswortels bevat en waarvan
de karakteristiek n niet deelt. Een bijectie tussen de verzameling van dergelijke uitbreidingen,
bevat in een vast gekozen algebräısche afsluiting K, en de verzameling ondergroepen van K× die
(K×)n bevatten, wordt namelijk verkregen door L te associëren met K×∩(L×)n, zie bijvoorbeeld
[Lan02, Theorem VI.8.2].

De Kummertheorie heeft interessante toepassingen bij het bestuderen van bepaalde dichthei-
dsproblemen: als α 6= 0 een element is van een getallenlichaam K, dan is de dichtheid van
priemidealen p van K zodanig dat de multiplicatieve orde van α modulo p copriem is met een
vast priemgetal `, dan wel een voorgeschreven `-adische valuatie heeft, kan worden uitgedrukt in
termen van de graden van de cyclotomische-Kummeruitbreidingen K(ζ`n , `

n√
α) voor alle n > 0,

waarbij ζ`n een eenheidswortel van orde `n is. Zie [Per15] voor het zojuist beschreven geval en
[DP16, PS19] voor een generalisatie naar ondergroepen van eindige rang in K×. Deze problemen
hangen nauw samen met het vermoeden van Artin over primitieve wortels, zoals bijvoorbeeld
uitgelegd in [Mor12].

Het berekenen van de graden van oneindig veel lichaamsuitbreidingen lijkt misschien een
zware taak. Het volgende is echter bekend (zie [PS19, Theorem 1.1] voor een direct bewijs): als
A een ondergroep van K× is van eindige rang r, dan is er een constante C > 0 zodanig dat voor

13



14 CONTENTS

elk positief geheel getal n de verhouding tussen nr en de graad [K( n
√
A) : K(ζn)] een deler is

van C. Dit resultaat kan effectief worden gemaakt, zie [PST20a, Theorem 1.2], en voor het geval
K = Q verschaffen de resultaten van [PST20b] een algoritme waarvan de output een eindige
formule is voor deze graden. Dit algoritme is gëımplementeerd in SageMath, zie [Tro19].

Algebräısche groepen

Tot nu toe hebben we Kummertheorie alleen in de klassieke zin besproken, maar deze concepten
kunnen als volgt worden veralgemeend. Zijn K een lichaam, zeg voor de eenvoud van karak-
teristiek nul, K een algebräısche afsluiting van K, en G een commutatieve algebräısche groep
over K. Als S een deelverzameling van G(K) is, dan is de lichaamsuitbreiding van K voortge-
bracht door S het deellichaam van K verkregen door aan K de coördinaten van de punten van S
toe te voegen. Om precies te zijn: als we elke x in S identificeren met een morfisme van schema’s
specK → specK(x), dan hebben we een verzameling morfismen K(x)→ K als x varieert in S,
en de samenstelling van de beelden van deze morfismen is dan per definitie K(S).

Zij nu A ⊆ G(K) een eindig voortgebrachte ondergroep. Voor elk positief geheel getal n
kunnen we de deelverzameling n−1A = {P ∈ G(K) | nP ∈ A} beschouwen. Uitbreidingen
van K van de vorm K(n−1A) zijn het onderwerp van de studie van de Kummertheorie voor
commutatieve algebräısche groepen. Zoals men kan zien door G = Gm te nemen, waar Gm de
multiplicatieve groep over K is, is deze theorie een directe generalisatie van de klassieke Kum-
mertheorie. Zelfs in deze algemeenheid hebben Kummeruitbreidingen veel van de interessante
eigenschappen van hun klassieke tegenhangers. Bijvoorbeeld is K(n−1A) een Galoisuitbreiding
van K die het n-torsielichaam van G bevat, dat wil zeggen de lichaamsuitbreiding van K voort-
gebracht door alle n-torsiepunten van G(K); bovendien is het Galois en abels over dit lichaam.
Torsielichamen zijn de directe veralgemening van cyclotomische lichamen, en veel resultaten over
Kummeruitbreidingen kunnen worden afgeleid uit eigenschappen van deze lichamen.

Als K een getallenlichaam is, dan kan het bovengenoemde dichtheidsprobleem mutatis mu-
tandis in deze algemenere context worden geformuleerd, en is het nog steeds gerelateerd aan
de graden van Kummeruitbreidingen. Zie [Pin04] voor een bespreking in het geval van abelse
variëteiten en [Per08, Per11] voor het product van een abelse variëteit en een torus. Dit motiveert
de studie van de graden van Kummeruitbreidingen in een algemene context. In zijn fundamentele
artikel [Rib79] bewees Ribet het volgende resultaat: als G het product is van een abelse variëteit
en een torus en A ⊆ G(K) een vrij Z-moduul van rang r is, met een basis over Z van punten
lineair onafhankelijk over EndK(G), dan bestaat er een positief geheel getal C zodanig dat de
verhouding tussen nrs en de graad [K(n−1A) : K(G[n])] een deler is van C voor elk positief
geheel getal n. Hier is s het unieke positieve gehele getal zodanig dat voor elke n > 1 geldt
G(K)[n] ∼= (Z/nZ)s. Zie ook [Ber88, Théorème 5.2] en [Hin88, Lemme 14]. De artikelen die in
dit proefschrift zijn verzameld, zijn gewijd aan het effectiever maken van dit resultaat, waarbij
wordt geprobeerd de constante C uit te drukken in termen van bekende grootheden gerelateerd
aan de torsielichamen van G.

Effectieve resultaten voor elliptische krommen

De eerste twee artikelen, geschreven in samenwerking met Lombardo, richten zich op het geval
van elliptische krommen. Zij G een elliptische kromme over een getallenlichaam K, zij K een
algebräısche afsluiting van K, en zij α ∈ G(K). In [JR10] hebben Jones en Rouse bewezen dat
voor elk priemgetal `, onder bepaalde aannames over α en met een kleine uitzondering voor
het priemgetal 2, de surjectiviteit van de `-adische Galoisrepresentatie geassocieerd met G de
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maximaliteit van de Kummeruitbreidingen K(n−1α) over K(G[n]) impliceert als n een macht is
van `. Zie [JR10, stelling 5.2] voor het niet-CM-geval en [JR10, stelling 5.8] voor het CM-geval.
In het licht hiervan formuleerde Perucca twee vragen: Als de Galoisrepresentatie niet surjectief
is, kunnen we dan het falen van de maximaliteit van de Kummeruitbreidingen beschrijven, of op
zijn minst begrenzen, in termen van het falen van de maximaliteit van de Galoisrepresentaties?
Kunnen deze resultaten worden gegeneraliseerd naar het geval waarin n een positief geheel getal
is?

Het eerste artikel dat hier [Chapter 1] wordt gepresenteerd, is bedoeld om deze vragen te
beantwoorden. De hoofdstelling [Chapter 1, Theorem 1.1] geeft een positief antwoord, maar
alleen onder de aanname dat EndK(G) = Z. Deze stelling is een effectieve versie van het klassieke
resultaat van Ribet in het geval van een groep G voortgebracht door een enkel punt α, en het
laat zien dat de bovengenoemde constante C alleen afhangt van eigenschappen van de `-adische
representaties, voor alle priemgetallen `, en andere effectief berekenbare grootheden geassocieerd
met G. Voorbeelden die de niet-toepasbaarheid van deze methoden op het CM-geval aantonen,
worden gegeven in [Chapter 1, Section 6]. De tweede hoofdstelling [Chapter 1, Theorem 1.2] laat
zien dat er over het lichaam Q een uniforme versie van dit resultaat bestaat onder de aanname
dat het punt α niet deelbaar is in G(Q)/G(Q)tors – dat wil zeggen dat er geen β ∈ G(Q) bestaat
zodanig dat α geschreven kan worden als nβ + τ voor een geheel getal n > 1 en τ ∈ G(Q)tors.

Het doel van het tweede artikel met Lombardo [Chapter 2] is om het bovengenoemde re-
sultaat [Chapter 1, Theorem 1.2] expliciet te maken door een werkelijke numerieke waarde te
vinden voor de constante C, zie [Chapter 2, Theorem 6.5 ]. Deze resultaten zijn bereikt door
uniforme grenzen te geven aan andere interessante grootheden die verband houden met de Ga-
loisrepresentaties van G. Opmerkelijke voorbeelden van zulke grootheden zijn de exponenten
van de cohomologiegroepen van Gal(Q(G(Q)tors) | Q) met coëfficiënten in de torsieondergroepen
van G, beschouwd als Galoismodulen. Grenzen voor vergelijkbare grootheden zijn onafhankelijk
gevonden door Cerchia en Rouse [CR21].

Een technisch raamwerk voor de algemene Kummertheorie

Sommige van de bovengenoemde expliciete resultaten zijn afhankelijk van eigenschappen van
Galoisrepresentaties die alleen voor elliptische krommen in een effectieve vorm bekend zijn. De
methoden die worden gebruikt om aan te tonen dat de graden van Kummeruitbreidingen gere-
lateerd zijn aan deze grootheden, zijn hier echter onafhankelijk van. In het derde artikel dat
in dit proefschrift is opgenomen, wordt dit duidelijk gemaakt door de theoretische achtergrond
te conceptualiseren in een raamwerk dat van toepassing is op elke commutatieve algebräısche
groep G over K die voldoet aan EndK(G) = Z. De methoden die in dit werk worden gebruikt,
zijn gëınspireerd op resultaten van Palenstijn [Pal04, Pal14] en op gesprekken met Lenstra en
Stevenhagen. Als toepassing worden de resultaten van [Chapter 1] en [Chapter 2] uitgebreid
naar groepen A met een rang hoger dan 1.

Tot nu toe hebben we het geval waarin de endomorfismering van G groter is dan Z nog
niet met succes aangepakt, en het lijkt erop dat onze methoden in dat geval een substantiële
verfijning nodig hebben. In zijn proefschrift [JP21] gaat Javan Peykar in op dit probleem in het
geval van elliptische krommen met complexe vermenigvuldiging door A ⊆ G(K) te nemen als een
EndK(G)-moduul, en de modulen van “delingspunten” door een Steinitzideaal te beschouwen.
Zelfs met enige technische beperkingen is deze methode zeer succesvol.

Gemotiveerd door deze benadering is het laatste artikel in dit proefschrift [Chapter 4] voor-
namelijk gewijd aan de studie van puur algebräısche eigenschappen van delingsmodulen over
algemene ringen. De door Javan Peykar gebruikte Steinitzidealen worden vervangen door ideaal-
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filters, en er wordt een veralgemening gegeven van het klassieke begrip injectiviteit, dat voor
zover de auteur weet nieuw is. Een notie van (J, T )-uitbreiding, waarbij J een vast ideaalfilter
is en T een geschikt R-moduul, generaliseert de modulen van delingspunten. De eigenschappen
van deze objecten worden vervolgens bestudeerd vanuit een categorietheoretisch oogpunt, waarna
enkele resultaten over hun automorfismegroepen worden gegeneraliseerd die zijn verschenen in
de minder algemene settings van [Pal04], [Pal14] en [JP21].

Deze lange uitweiding in de commutatieve algebra werpt uiteindelijk zijn vruchten af: de zo
geconstrueerde theorie, die die van [Chapter 3] generaliseert, wordt uiteindelijk toegepast om
de resultaten van [Chapter 1] en [JP21] te verenigen en te veralgemenen, wat aantoont dat de
twee schijnbaar verschillende benaderingen eigenlijk gewoon verschillende realisaties zijn van een
algemenere theorie. De mate van algemeenheid die in dit artikel wordt gebruikt, opent de deur
naar toepassingen op hogerdimensionale abelse variëteiten en andere klassen van commutatieve
algebräısche groepen.



Chapter 1

Effective Kummer theory for
elliptic curves

by Davide Lombardo and Sebastiano Tronto [LT21a]

1 Introduction

1.1 Setting

Let E be an elliptic curve defined over a number field K (for which we fix an algebraic closure K)
and let α ∈ E(K) be a point of infinite order. The purpose of this paper is to study the extensions
of K generated by the division points of α; in order to formally introduce these extensions we
need to set some notation.

Given a positive integer M , we denote by E[M ] the group of M -torsion points of E, that
is, the set {P ∈ E(K) : MP = 0} equipped with the group law inherited from E. Moreover,
we denote by KM the M -th torsion field K(E[M ]) of E, namely, the finite extension of K
obtained by adjoining the coordinates of all the M -torsion points of E. For each positive integer
N dividing M , we let N−1α :=

{
β ∈ E(K) | Nβ = α

}
denote the set of N -division points of α

and set

KM,N := K(E[M ], N−1α).

The field KM,N is called the (M,N)-Kummer extension of K (associated with α), and both
KM and KM,N are finite Galois extensions of K. It is a classical question to study the degree
of KM,N over KM as M,N vary, see for example [Ber88, Théorème 1], [Hin88, Lemme 14],
or Ribet’s foundational paper [Rib79]. In particular, it is known that there exists an integer
C = C(E/K,α), depending only on E/K and α, such that

N2

[KM,N : KM ]
divides C

for every pair of positive integers (M,N) with N |M . The aim of this paper is to give an explicit
version of this result, and to show that it can be made uniform when the base field is K = Q. Our
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first result is that, under the assumption EndK(E) = Z, the integer C can be bounded (explicitly)
in terms of the `-adic Galois representations attached to E and of divisibility properties of the
point α, and that this statement becomes false if we remove the hypothesis EndK(E) = Z. On
the other hand, the assumption EndK(E) = Z is always satisfied when K = Q, and we show
that in this case C can be taken to be independent of E and α, provided that α and all its
translates by torsion points are not divisible by any n > 1 in the group E(Q). This is a rather
surprising statement, especially given that such a strong uniformity result is not known for the
closely connected problem of studying the degrees of the torsion fields KM over K.

1.2 Main results

Our main results are the following.

Theorem 1.1. Assume that EndK(E) = Z. There is an explicit constant C, depending only on
α and on the `-adic torsion representations associated to E for all primes `, such that

N2

[KM,N : KM ]
divides C

for all pairs of positive integers (M,N) with N dividing M .

The proof gives an explicit expression for C that depends on computable parameters associ-
ated with E and α. We also show that all these quantities can be bounded effectively in terms
of standard invariants of the elliptic curve and of the height of α, see Remark 5.17.

Theorem 1.2. There is a universal constant C > 0 with the following property. Let E/Q be
an elliptic curve, and let α ∈ E(Q) be a point such that the class of α in the free abelian group
E(Q)/E(Q)tors is not divisible by any n > 1. Then

N2

[QM,N : QM ]
divides C

for all pairs of positive integers (M,N) with N dividing M .

The assumption on the divisibility of the point α is necessary: it is enough to replace α with a

multiple `α to gain an extra factor `2 in the ratio N2

[QM,N :QM ] when N is divisible by a sufficiently

high power of `. However, one can remove this assumption and obtain a bound that depends
only on the largest integer n such that α is n-divisible in E(Q)/E(Q)tors, but not on the curve,
see Remark 7.2. Also observe that Theorems 1.1 and 1.2 immediately imply lower bounds of the
form [KM,N : KM ] > 1

CN
2.

We remark that recent work by Cerchia and Rouse [CR21] also investigates similar questions
– in particular, the problem of uniformity – but only focuses on a single `-adic representation
at a time (equivalently: the case when M,N are both powers of some fixed prime `), while our
results cover the more general adelic situation. In fact, the main difficulty in the present work
stems from the possible interactions between the `-power torsion fields for different primes ` (the
so-called entanglement phenomenon), and it is to handle this difficulty that we need to introduce
some new ideas in Section 7. These ideas allow us to reduce the study of the cohomology of the
Galois modules E[N ] for general N to the corresponding question for E[`k], where `k | N ; this is
nontrivial precisely because there can be interactions between torsion fields related to different
primes. Our main cohomological result (Theorem 7.5) can be stated as follows.

Theorem 1.3. There is a positive integer C1 such that, for every elliptic curve E/Q, the expo-
nent of H1(Gal(Q(E(Q)tors) | Q), E(Q)tors) divides C1.
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It is not hard to see that this statement would follow from a positive answer to Serre’s well-
known uniformity question concerning the Galois representations attached to elliptic curves over
Q (see e.g. [Ser72, §4.3]). In order to obtain an unconditional proof we need to combine several
ingredients: in addition to some cohomological tools, including the inflation-restriction sequence,
our proof of this theorem relies on several deep results on the images of the modulo-` Galois
representations attached to elliptic curves, including the uniform boundedness of isogenies for
elliptic curves defined over Q (Theorem 3.14). The fact that similar results are not known for
general number fields is the main reason why at present we cannot easily generalise Theorem 1.2
to number fields other than Q.

1.3 Structure of the paper

We start with some necessary general preliminaries in Section 2, leading up to a factorisation of
the constant C of Theorem 1.1 as a product of certain contributions which we dub the `-adic
and adelic failures (corresponding to E, α, and a fixed prime `). In the same section we also
introduce some of the main actors of this paper, in the form of several Galois representations
associated with the torsion and Kummer extensions. In Section 3 we then recall some important
properties of the torsion representations that will be needed in the rest of the paper. In Sections
4 and 5 we study the `-adic and adelic failures respectively. In Section 6 we show that one cannot
hope to näıvely generalise some of the results in section 4 to CM curves. Finally, in Section 7
we prove Theorem 1.2 by establishing several auxiliary results about the Galois cohomology of
the torsion modules E[M ] that might have an independent interest.

2 Preliminaries

2.1 Notation and definitions

The letter K will always denote a number field, E an elliptic curve defined over K, and α a
point of infinite order in E(K). For n a positive integer, we denote by ζn a primitive root of
unity of order n. Given a prime `, we denote by v` the usual `-adic valuation on Q and on Q`. If
X is a vector in Zn` or a matrix in Matm×n(Z`), we call valuation of X, denoted by v`(X), the
minimum of the `-adic valuations of its coefficients.

We shall often use divisibility conditions involving the symbols `∞ (where ` is a prime)
and ∞. Our convention is that every power of ` divides `∞, every positive integer divides ∞,
and `∞ divides ∞. Recall from the Introduction that we denote by KM the field K(E[M ])
generated by the coordinates of the M -torsion points of E, and by KM,N (for N | M) the field
K(E[M ], N−1α). We extend this notation by setting K`∞ =

⋃
nK`n , K∞ =

⋃
M KM , and more

generally, for M,N ∈ N>0 ∪ {`∞,∞} with N |M ,

KM =
⋃
d|M

Kd, KM,N =
⋃
d|M

⋃
e|d
e|N

Kd,e

If H is a subgroup of GL2(Z`), we denote by Z`[H] the sub-Z`-algebra of Mat2(Z`) topo-
logically generated by the elements of H. Let G be a (profinite) group. We write G′ for its
derived subgroup, namely, the subgroup of G (topologically) generated by commutators, and
Gab = G/G′ for its abelianisation, namely, its largest abelian (profinite) quotient. We say that
a finite simple group S occurs in a profinite group G if there are closed subgroups H1, H2 of G,
with H1 /H2, such that H2/H1 is isomorphic to S. Finally, we denote by expG the exponent of
a finite group G, namely, the smallest integer e > 1 such that ge = 1 for every g ∈ G.
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2.2 The `-adic and adelic failures

We start by observing that it is enough to restrict our attention to the case N = M :

Remark 2.1. Suppose that there is a constant C > 1 such that

M2

[KM,M : KM ]
divides C

for all positive integers M . Then for any N |M , since [KM,M : KM,N ] divides (M/N)2, we have
that

N2

[KM,N : KM ]
=
N2[KM,M : KM,N ]

[KM,M : KM ]
divides

M2

[KM,M : KM ]
,

which in turn divides C.

We now describe a decomposition of the ratio N2

[KN,N :KN ] into two arithmetically meaningful

parts. Elementary field theory gives

N2

[KN,N : KN ]
=

∏
`|N

` prime

`2n`

[KN,`n` : KN ]
=

=
∏
`|N

` prime

`2n`

[K`n` ,`n` : K`n` ]
· [K`n` ,`n` : K`n` ]

[KN,`n` : KN ]
=

=
∏
`|N

` prime

`2n`

[K`n` ,`n` : K`n` ]
· [K`n` ,`n` ∩KN : K`n` ]

where n` = v`(N). To see why the first equality holds, recall that the degree [KN,`n` : KN ] is
a power of `, so the fields KN,`n` are linearly disjoint over KN , and clearly they generate all of
KN,N .

Definition 2.2. Let ` be a prime and N a positive integer. Let n := v`(N). We call

A`(N) :=
`2n

[K`n,`n : K`n ]

the `-adic failure at N and

B`(N) :=
[K`n,`n : K`n ]

[KN,`n : KN ]
= [K`n,`n ∩KN : K`n ]

the adelic failure at N (related to `). Notice that both A`(N) and B`(N) are powers of `.

Example 2.3. It is clear that the `-adic failure A`(N) can be nontrivial, that is, different from
1. Suppose for example that α = `β for some β ∈ E(K): then we have

K`n,`n = K`n(`−nα) = K`n(`−n+1β),

and the degree of this field over K`n is at most `2(n−1), so `2 | A`(N). In Example 4.5 we will
show that the `-adic failure can be non-trivial also when α is strongly `-indivisible (see Definition
4.1).
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Example 2.4. We now show that the adelic failure B`(N) can be non-trivial as well. Consider
the elliptic curve E over Q given by the equation

y2 = x3 + x2 − 44x− 84

and with Cremona label 624f2 (see [LMF22, label 624f2]). One can show that E(Q) ∼= Z ⊕
(Z/2Z)2, so that the curve has full rational 2-torsion, and that a generator of the free part of
E(Q) is given by P = (−5, 6). The 2-division points of P are given by (1 +

√
−3,−3 + 7

√
−3),

(−11 + 3
√
−3, 27 + 15

√
−3), and their Galois conjugates, so they are defined over Q(ζ3) ⊆ Q3,

and we have B2(6) := [Q2,2∩Q6 : Q2] = [Q(ζ3) : Q] = 2. These computations have been checked
with SageMath [The].

2.3 The torsion, Kummer and arboreal representations

In this section we introduce three representations of the absolute Galois group of K that will be
our main tool for studying the extensions KM,N . For further information about these represen-
tations see for example [JR10, Section 3], [BP21], and [LP21].

The torsion representation

Let N be a positive integer. The group E[N ] of N -torsion points of E is a free Z/NZ-module
of rank 2. Since the multiplication-by-N map is defined over K, the absolute Galois group of K
acts Z/NZ-linearly on E[N ], and we get a homomorphism

τN : Gal(K | K)→ Aut(E[N ]).

The field fixed by the kernel of τN is exactly the N -th torsion field KN . Thus, after fixing a
Z/NZ-basis of E[N ], the Galois group Gal(KN | K) is identified with a subgroup of GL2(Z/NZ)
which we denote by HN .

As N varies, and provided that we have made compatible choices of bases, these representa-
tions form a compatible projective system. We can therefore pass to the limit over the powers of
a fixed prime number ` to obtain the `-adic torsion representation τ`∞ : Gal(K | K)→ GL2(Z`).
We can also take the limit over all integers N (ordered by divisibility) to obtain the adelic torsion

representation τ∞ : Gal(K | K) → GL2(Ẑ). We denote by H`∞ (resp. H∞) the image of τ`∞

(resp. τ∞). The group H`∞ (resp. H∞) is isomorphic to Gal(K`∞ | K) (resp. Gal(K∞ | K)).
One can also pass to the limit on the torsion subgroups themselves, obtaining the `-adic Tate

module T`E = lim←−nE[`n] ∼= Z2
` and the adelic Tate module TE = lim←−M E[M ] ∼= Ẑ2 ∼=

∏
` Z2

` .

The Kummer representation

Let M and N be positive integers with N | M . Let β ∈ E(K) be a point such that Nβ = α.
For any σ ∈ Gal(K | KM ) we have that σ(β)− β is an N -torsion point, so the following map is
well-defined:

κN : Gal(K | KM ) → E[N ]
σ 7→ σ(β)− β.

Since any other N -division point β′ of α satisfies β′ = β + T for some T ∈ E[N ], and the
coordinates of T belong to KN ⊆ KM , the map κN does not depend on the choice of β. It is also
immediate to check that κN is a group homomorphism, and that the field fixed by its kernel is
exactly the (M,N)-Kummer extension of K. Fixing a basis of E[N ] we can identify the Galois
group Gal(KM,N | KM ) with a subgroup of (Z/NZ)2. It is then clear that KM,N is an abelian

http://www.lmfdb.org/EllipticCurve/Q/624f2/
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extension of KM of degree dividing N2, and the Galois group of this extension has exponent
dividing N . In the special case M = N we denote by VN the image of Gal (KN,N | KN ) in
(Z/NZ)2.

By passing to the limit in the previous constructions we also obtain the following:

(i) There is an `-adic Kummer representation κ`∞ : Gal(K | K`∞)→ T`E which factors via a
map Gal(K`∞,`∞ | K`∞)→ T`E (still denoted by κ`∞).

(ii) The image V`∞ of κ`∞ is a sub-Z`-module of T`E ∼= Z2
` , and it is isomorphic to Gal(K`∞,`∞ |

K`∞) as a profinite group. We therefore identify the Galois group Gal(K`∞,`∞ | K`∞) with
V`∞ .

(iii) We can identify the Galois group Gal(K∞,`∞ | K∞) with a Z`-submodule W`∞ of V`∞

(hence also of T`E) via the representation κ`∞ .

(iv) We can identify the Galois group Gal(K∞,∞ | K∞) with a sub-Ẑ-module W∞ of TE ∼= Ẑ2.

Notice that W`∞ is the projection of W∞ in Z2
` , and since W`∞ is a pro-` group and there

are no nontrivial continuous morphisms from a pro-` group to a pro-`′ group for ` 6= `′ we have
W∞ =

∏
`W`∞ .

The arboreal representation

Fix a sequence {βi}i∈N of points in E(K) such that β1 = α and NβM = βM/N for all pairs of
positive integers (N,M) with N |M . For every N > 1 fix furthermore a Z/NZ-basis {TN1 , TN2 }
of E[N ] in such a way that NTM1 = T

M/N
1 and NTM2 = T

M/N
2 for every pair of positive integers

(N,M) with N |M . For every N > 1, the map

ωN : Gal(KN,N | K)→ (Z/NZ)
2 o GL2 (Z/NZ)

σ 7→ (σ(βN )− βN , τN (σ))

is an injective homomorphism (similarly to [JR10, Proposition 3.1]) and thus identifies the group

Gal(KN,N | K) with a subgroup of (Z/NZ)
2 o GL2 (Z/NZ).

It will be important for our applications to notice that VN comes equipped with an action
of HN coming from the fact that VN is the (abelian) kernel of the natural map Gal(KN,N |
K)→ HN . More precisely, the action of h ∈ HN on v ∈ VN is given by conjugating the element
(v, Id) ∈ (Z/NZ)2 o GL2(Z/NZ) by (0, h). Explicitly, we have

(0, h)(v, Id)(0, h)−1 = (hv, h)(0, h−1) = (hv, Id),

so that the action of HN on VN is induced by the natural action of GL2(Z/NZ) on (Z/NZ)
2
.

We obtain similar statements by suitably passing to the limit in N :

Lemma 2.5. For every positive integer N , the group VN is an HN -submodule of (Z/NZ)2 for
the natural action of HN 6 GL2(Z/NZ) on VN 6 (Z/NZ)2. Similarly, both V`∞ and W`∞ are
H`∞-modules.

Remark 2.6. Let N ∈ N ∪ {`∞} and M ∈ N ∪ {`∞,∞} with N | M . Then the group
Gal(KM,N | KM ) can be identified with a subgroup of VN : this follows from inspection of the
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diagram
KM,N

KM KN,N

KM ∩KN,N

KN

which shows that Gal(KM,N | KM ) is isomorphic to Gal(KN,N | KM ∩KN,N ), which in turn is
clearly a subgroup of Gal(KN,N | KN ) ∼= VN .

2.4 Curves with complex multiplication

If EndK(E) 6= Z we say that E has complex multiplication, or CM for short. In this case EndK(E)
is an order in an imaginary quadratic field, called the CM-field of E. The torsion representations
in the CM case have been studied for example in [Deu53] and [Deu58]. In this case, the image of
the torsion representation τ`∞ is closely related to the Cartan subgroup of GL2(Z`) corresponding
to EndK(E), defined as follows:

Definition 2.7. Let F be a reduced Q`-algebra of degree 2 and let A` be a Z`-order in F . The
Cartan subgroup corresponding to A` is the group of units of A`, which we embed in GL2(Z`)
by fixing a Z`-basis of A` and considering the left multiplication action of A×` . If A is an order
in an imaginary quadratic number field, the Cartan subgroup of GL2(Z`) corresponding to A is
defined by taking A` = A⊗ Z` in the above.

More precisely, when E/K is an elliptic curve with CM, the image of the `-adic torsion
representation τ`∞ is always contained (up to conjugacy in GL2(Z`)) in the normaliser of the
Cartan subgroup corresponding to EndK(E), and is contained in the Cartan subgroup itself if
and only if the complex multiplication is defined over the base field K.

In order to have a practical representation of Cartan subgroups, we recall the following
definition from [LP17]:

Definition 2.8. Let C be a Cartan subgroup of GL2(Z`). We say that (γ, δ) ∈ Z2
` are parameters

for C if C is conjugated in GL2(Z`) to the subgroup{(
x δy
y x+ γy

)
: x, y ∈ Z`, v`(x(x+ γy)− δy2) = 0

}
. (2.1)

Parameters for C always exist, see [LP17, §2.3].

Remark 2.9 (([LP17, Remark 9])). One may always assume that γ, δ are integers. Furthermore,
one can always take γ ∈ {0, 1}, and γ = 0 if ` 6= 2.

We also recall the following explicit description of the normaliser of a Cartan subgroup [LP17,
Lemma 14]:

Lemma 2.10. A Cartan subgroup has index 2 in its normaliser. If C is as in (2.1), its normaliser
N in GL2(Z`) is the disjoint union of C and

C ′ :=

(
1 γ
0 −1

)
· C .
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3 Properties of the torsion representation

Torsion representations are studied extensively in the literature; we have in particular the fol-
lowing fundamental theorem of Serre [Ser72], which applies to all elliptic curves (defined over
number fields) without complex multiplication:

Theorem 3.1 (Serre). If EndK(E) = Z, then H∞ is open in GL2(Ẑ). Equivalently, the index
of HN in GL2(Z/NZ) is bounded independently of N .

There is also a CM analogue of Theorem 3.1, which is more easily stated by introducing the
following definition:

Definition 3.2. Let E/K be an elliptic curve and ` be a prime number. We say that the image
of the `-adic representation is maximal if one of the following holds:

(i) E does not have CM over K and H`∞ = GL2(Z`).

(ii) E has CM overK by an orderA in the imaginary quadratic field F , the prime ` is unramified
in F and does not divide [OF : A], and H`∞ is conjugated to the Cartan subgroup of
GL2(Z`) corresponding to A.

(iii) E has CM over K (but not over K) by an order A in the imaginary quadratic field F , the
prime ` is unramified in F and does not divide [OF : A], and H`∞ is conjugated to the
normaliser of the Cartan subgroup of GL2(Z`) corresponding to A.

Theorem 3.3 ([Ser72, Corollaire on p. 302]). Let E/K be an elliptic curve admitting CM over
K. Then the `-adic representation attached to E/K is maximal for all but finitely many primes
`.

In the rest of this section we recall various important properties of the torsion representa-
tions: we shall need results that describe both the asymptotic behaviour of the mod `n torsion
representation as n → ∞ (§3.1 and 3.2) and the possible images of the mod ` representations
attached to elliptic curves defined over the rationals (§3.3).

3.1 Maximal growth

We recall some results on the growth of the torsion extensions from [LP21, §2.3].

Proposition 3.4. Let ` be a prime number. Let δ = 2 if E has complex multiplication and δ = 4
otherwise. There exists a positive integer n` such that

#H`n+1/#H`n = `δ for every n > n`.

Proof. This follows from Theorem 3.1 in the non-CM case and from classical results in the CM
case. See also [LP21, Lemma 10 and Remark 13] for a more general result.

Definition 3.5. We call an integer n` as in Proposition 3.4 a parameter of maximal growth
for the `-adic torsion representation. We say that it is minimal if n` − 1 is not a parameter of
maximal growth; when ` = 2, we require that the minimal parameter be at least 2.

Remark 3.6. In the non-CM case we can give an equivalent definition of n` as follows. Consider
the fundamental system of open neighbourhoods of Id in GL2(Z`) given by the normal subgroups

· · · ⊆ Id + `n Mat2(Z`) ⊆ · · · ⊆ Id + `2 Mat2(Z`) ⊆ Id + `Mat2(Z`) ⊆ GL2(Z`).
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If E does not have CM over K, Theorem 3.1 implies that H`∞ has finite index in GL2(Z`), so it
must contain a subgroup of the form I+`n Mat2(Z`). Then it is easy to see that n` is the minimal
such positive integer n. One can also give similar, but more complicated, characterisations of
n` in the CM case using the structure of the Cartan subgroup associated with the `-adic Galois
representation attached to E/K.

Remark 3.7. The assumption n` > 2 when ` = 2 is needed to apply [LP21, Theorem 12].

Remark 3.8. Given an explicit elliptic curve E/K and a prime `, the problem of determining
the optimal value of n` can be solved effectively (see [LP21, Remark 13]). However, computing
n` can be challenging in practice, because the näıve algorithm requires the determination of the
Galois groups of the splitting fields of several large-degree polynomials. The situation is usually
better for smaller primes `, and especially for ` = 2, for which the 2-torsion tower is known
essentially explicitly (see [RZB15] for a complete classification result when K = Q, and [Yel15]
for a description of the 2-torsion tower of a given elliptic curve over a number field).

The following lemma, originally due to Serre, is very close in spirit to Proposition 3.4, and
gives some control on the growth of the image of the `-adic representation when the residual
mod-` representation is surjective:

Lemma 3.9 (Serre, [Ser97, IV-23, Lemma 3]). Let ` > 5 be a prime and let G ⊆ SL2(Z/`kZ)
be a subgroup. Let π : SL2(Z/`kZ) → SL2(Z/`Z) be the reduction homomorphism and suppose
that π(G) = SL2(Z/`Z): then G = SL2(Z/`kZ).

In Section 5 we will need to bound the minimal parameter of maximal growth for the `-adic
torsion representation defined over certain extensions of the base field. We will do so with the
help of the following Lemma:

Lemma 3.10. Let K̃ be a finite extension of K. Let n` (resp. ñ`) be the minimal parameter
of maximal growth for the `-adic torsion representation attached to E/K (resp. E/K̃). Then
ñ` 6 n` + v`([K̃ : K]).

Proof. Let n0 := n` + v`([K̃ : K]) + 1 and consider the following diagram:

K̃`n0

K̃`n` K`n0

K̃`n` ∩K`n0K̃

K`n`

K̃ ∩K`n`

K
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Since clearly [K̃`n` ∩K`n0 : K`n` ] divides [K̃`n` : K`n` ], which in turn divides [K̃ : K], and since
[K̃`n0 : K̃`n` ] = [K`n0 : K̃`n` ∩K`n0 ], we have

v` ([K`n0 : K`n` ]) = v`

(
[K`n0 : K̃`n` ∩K`n0 ]

)
+ v`

(
[K̃`n` ∩K`n0 : K`n` ]

)
6 v`

(
[K̃`n0 : K̃`n` ]

)
+ v`

(
[K̃ : K]

)
.

By [LP21, Theorem 12] we have

v` ([K`n0 : K`n` ]) = δ(n0 − n`) = δ
(
v`

(
[K̃ : K]

)
+ 1
)
,

where δ is as in Proposition 3.4, and we get

v`

(
[K̃`n0 : K̃`n` ]

)
> δ + (δ − 1)v`

(
[K̃ : K]

)
> (δ − 1)(n0 − n`).

Consider now the tower of extensions K̃`n` ⊆ K̃`n`+1 ⊆ · · · ⊆ K̃`n0 and notice that by the
pigeonhole principle for at least one n ∈ {n`, n` + 1, . . . , n0 − 1} we must have [K̃`n+1 : K̃`n ] > δ.
But then by [LP21, Theorem 12] we have maximal growth over K̃ from n < n0. Thus we get

ñ` 6 n` + v`

(
[K̃ : K]

)
as claimed.

3.2 Uniform growth of `-adic representations

The results in this subsection and the next will be needed in Section 7. We start by recalling the
following result, due to Arai:

Theorem 3.11 ([Ara08, Theorem 1.2]). Let K be a number field and let ` be a prime. Then
there exists an integer n > 0, depending only on K and `, such that for any elliptic curve E over
K with no complex multiplication over K we have

τ`∞(Gal(K | K)) ⊇ {M ∈ GL2(Z`) : M ≡ Id (mod `n)}.

For the next result we shall need a well-known Lemma about twists of elliptic curves:

Lemma 3.12. Let E1, E2 be elliptic curves over K such that (E1)Q is isomorphic to (E2)Q.
There is an extension F of K, of degree dividing 12, such that E1 and E2 become isomorphic
over F .

Proof. Fixing a Q-isomorphism between E1 and E2 allows us to attach to E2 a class in the
cohomology group H1

(
Gal(K | K),Aut(E1)

)
. Since

H1
(
Gal(K | K),Aut(E1)

) ∼= K×/K×n

for some n ∈ {2, 4, 6} (see [Sil09, Proposition X.5.4]), the class of E2 corresponds to the class of
a certain [α] ∈ K×/K×n. Letting F = K( n

√
α), whose degree over K divides 12, it is clear that

[α] ∈ F×/F×n is trivial, so the same is true for [E2] ∈ H1(Gal(F | F ),Aut(E1)), which means
that E2 is isomorphic to E1 over F as desired.

Corollary 3.13. Let K be a number field and ` be a prime number. There exists an integer
n` with the following property: for every elliptic curve E/K, the minimal parameter of maximal
growth for the `-adic representation attached to E is at most n`.
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Proof. Let n be the integer whose existence is guaranteed by Theorem 3.11. By the general theory
of CM elliptic curves, we know that there are finitely many values j1, . . . , jk ∈ Q such that for
every CM elliptic curve E/K we have j(E) ∈ {j1, . . . , jk}. For each such ji, fix an elliptic curve
Ei/K with j(Ei) = ji. To every Ei/K corresponds a minimal parameter of maximal growth for
the `-adic representation that we call mi. Let n` = max{n,mi + 2

∣∣ i = 1, . . . , k}: we claim that
this value of n` satisfies the conclusion of the Corollary. Indeed, let E/K be any elliptic curve.
If E does not have CM, the minimal parameter of maximal growth for its `-adic representation
is at most n 6 n`. If E has CM, then there exists i such that j(E) = ji = j(Ei), so E is a twist
of Ei. By Lemma 3.12 the curves E and Ei become isomorphic over an extension F/K of degree
dividing 12, so if m (resp. m̃, resp. m̃i) denotes the minimal parameter of maximal growth for
E/K (resp. for E/F , resp. for Ei/F ) we have

m 6 m̃ = m̃i 6 mi + 2 6 n`,

where the equality follows from the fact that E and Ei are isomorphic over F , while the inequality
m̃i 6 mi+2 follows from Lemma 3.10 combined with the fact that we have v`([F : K]) 6 v`(12) 6
2 for every prime `.

3.3 Possible images of mod ` representations

We recall several results concerning the images of the mod ` representations attached to elliptic
curves over Q. We begin with a famous Theorem of Mazur, to state which we let

T0 := {p prime | p 6 17} ∪ {37}.

Theorem 3.14 ([MG78, Theorem 1]). Let E/Q be an elliptic curve and assume that E has a
Q-rational subgroup of order p. Then p ∈ T0 ∪ {19, 43, 67, 163}. If E does not have CM over Q,
then p ∈ T0.

We then recall the following result of Zywina, which builds upon previous work of Serre,
Mazur [MG78], Bilu-Parent [BP11], and Bilu-Parent-Rebolledo [BPR13]:

Theorem 3.15 ([Zyw15a, Proposition 1.13]). Let E/Q be a non-CM elliptic curve and p 6∈ T0 be

a prime. Let Cns(p) be the subgroup of GL2(Fp) consisting of all matrices of the form

(
a bε
b a

)
with (a, b) ∈ F2

p \ {(0, 0)} and ε a fixed element of F×p \ F×2
p . Then Hp is conjugate to one of the

following:

(i) GL2(Fp);

(ii) the normaliser Nns(p) of Cns(p);

(iii) the index 3 subgroup

D(p) :=
{
a3 | a ∈ Cns(p)

}
∪
{(

1 0
0 −1

)
· a3 | a ∈ Cns(p)

}
of Nns(p).

Moreover, the last case can only occur if p ≡ 2 (mod 3).

Corollary 3.16. Let E/Q be a non-CM elliptic curve and p 6∈ T0 be a prime. The following
hold:
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(1) The image Hp of the modulo-p representation attached to E contains

{λ Id | λ ∈ F×p }.

(2) Suppose Hp 6= GL2(Fp) and let gp ∈ GL2(Fp) be an element that normalises Hp. Then there
is h ∈ GL2(Fp) such that h−1gph ∈ Nns(p) and h−1Hph ⊆ Nns(p).

Proof. (1) We apply Theorem 3.15. If Hp is either GL2(Fp) or conjugate to Nns(p), the con-
clusion follows trivially, since Cns(p) contains all scalars. In case (iii) of Theorem 3.15, Hp

contains the cubes of the scalars, hence all scalars since p ≡ 2 (mod 3).

(2) We only have to consider cases (ii) and (iii) of Theorem 3.15. Up to conjugation, we may
assume that Hp ⊆ Nns(p) and the claim becomes gp ∈ Nns(p).

In case (ii) it suffices to check that the normaliser of Nns(p) is Nns(p) itself. This holds
because Cns(p), being the only cyclic subgroup of index 2 of Nns(p), is characteristic in
Nns(p); hence any element that normalises Nns(p) normalises Cns(p) as well, so it must be in
Nns(p). In case (iii), one similarly sees that {a3 | a ∈ Cns(p)} is characteristic in D(p) and
that its normaliser is Nns(p), and the conclusion follows as above.

Lemma 3.17. Let ` be a prime number and let H be a closed subgroup of GL2(Z`). Denote
by H` the reduction of H modulo ` and suppose that H` contains a scalar matrix λ Id. Then H
contains a scalar matrix λ Id for some λ ∈ Z×` with λ ≡ λ (mod `).

Proof. Let h ∈ H be any element that is congruent modulo ` to λ Id. Let λ ∈ Z×` be the
Teichmüller lift of λ (that is, λ` = λ and λ ≡ λ (mod `)) and write h = λh1, where h1 = Id +`A
for some A ∈ Mat2(Z`). The sequence h`

n

= λ`
n

h`
n

1 = λh`
n

1 converges to λ Id, because for every

n we have h`
n

1 = (Id +`A)
`n ≡ Id (mod `n). As H is closed, the limit of this sequence, namely

λ Id, also belongs to H as claimed.

We conclude this section with a group-theoretic lemma. Recall from Section 2 that we say
that a finite simple group S occurs in G if S is isomorphic to a quotient of a subgroup of G.

Lemma 3.18 (Serre, [Ser97, IV-25]). Let p be a prime and let H be a subgroup of GL2(Fp).
Let S be a non-abelian simple group that occurs in H. Then S is isomorphic either to A5 or to
PSL2(Fp); the latter case is only possible if H contains SL2(Fp).

4 The `-adic failure

The aim of this section is to study the `-adic failure A`(N) for a fixed prime `. The divisibility
properties of α in the group E(K) play a crucial role in the study of this quantity, so we begin
with the following definition:

Definition 4.1. Let α ∈ E(K) and let n be a positive integer. We say that α is n-indivisible over
K if there is no β ∈ E(K) such that nβ = α; otherwise we say that α is n-divisible or divisible by
n over K. Let ` be a prime number. We say that α is strongly `-indivisible over K if the point
α+ T is `-indivisible over K for every torsion point T ∈ E(K) of `-power order. Finally, we say
that α is strongly indivisible over K if its image in the free abelian group E(K)/E(K)tors is not
divisible by any n > 1, or equivalently if α is strongly `-indivisible over K for every prime `.

Our aim is to give an analogue of the following result, which bounds the index of the image
of the Kummer representation, in those cases when the torsion representation is not surjective.
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Theorem 4.2 (Jones-Rouse, [JR10, Theorem 5.2]). Assume that the `-adic torsion representa-
tion τ`∞ : Gal(K`∞ | K) → GL2(Z`) is surjective. Assume that α is `-indivisible in E(K) and,
if ` = 2, assume that K2,2 6⊆ K4. Then the `-adic Kummer representation κ`∞ : Gal(K`∞,`∞ |
K`∞)→ Z2

` is surjective.

4.1 An exact sequence

We shall need to understand the divisibility properties of α not only over the base field K, but
also over the division fields of E. Thus we turn to studying how the divisibility of the point α
by powers of ` changes when passing to a field extension. Our main tool will be the following
Lemma.

Lemma 4.3. Let L be a finite Galois extension of K with Galois group G. For every m > 1
there is an exact sequence of abelian groups

0→ mE(K)→ E(K) ∩mE(L)→ H1(G,E[m](L)),

where the injective map on the left is the natural inclusion.

Proof. Consider the short exact sequence of G-modules

0→ E[m](L)→ E(L)
[m]−−→ mE(L)→ 0

and the beginning of the long exact sequence in cohomology,

0→ (E[m](L))G → (E(L))G → (mE(L))G → H1(G,E[m](L)).

Noticing that

(E[m](L))G = E[m](K), (E(L))G = E(K), (mE(L))G = E(K) ∩mE(L)

and that

E(K)/E[m](K) ∼= mE(K)

the lemma follows.

The quotient (E(K) ∩mE(L)) /mE(K) gives a measure of “how many” K-points of E are
m-divisible in E(L) but not m-divisible in E(K). We shall often use this Lemma in the special
case of m = `n being a power of `: in this context, the quotient (E(K) ∩ `nE(L)) /`nE(K) is a
subgroup of E(K)/`nE(K), so its exponent divides `n. We conclude that if ` - #H1(G,E[`n](L))
then no `-indivisible K-point of E can become `-divisible in E(L). This applies in particular
when ` - #G, see [NSW13, Proposition 1.6.2].

4.2 Divisibility in the `-torsion field

As an example, we investigate the situation of Lemma 4.3 with m = ` and L = K`. In this case
the exact sequence becomes

0→ `E(K)→ E(K) ∩ `E(K`)→ H1(H`, E[`]).

The following Lemma can also be found in [LW15, Section 3].
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Lemma 4.4. The cohomology group H1(H`, E[`]) is either trivial or cyclic of order `. When
` = 2 it is always trivial.

Proof. Since `E[`] = 0, we have `H1(H`, E[`]) = 0. It follows from [Ser13, Theorem IX.4] that
we have an injective map H1(H`, E[`])→ H1(S`, E[`]), where S` is an `-Sylow subgroup of H`.
This is either trivial, in which case H1(H`, E[`]) = 0, or cyclic of order `. In the latter case, up

to a change of basis for E[`] we can assume that S` is generated by σ =

(
1 1
0 1

)
. One can

conclude the proof by explicitly computing the cohomology of the cyclic group 〈σ〉 as in [LW15,
Lemma 7].

In [LW15] the authors classify the cases when H1(H`, E[`]) 6= 0 for K = Q and they give
rather complete results in case K is a number field with K ∩Q(ζ`) = Q. In particular, it turns
out that, for K = Q, the group H1(H`, E[`]) can be non-trivial only when ` = 3, 5, 11, and only
when additional conditions are satisfied (see [LW15, Theorem 1]).

The next Example shows that for K = Q a point in E(Q) that is strongly 3-indivisible may
become 3-divisible over the 3-torsion field.

Example 4.5. Consider the elliptic curve E over Q given by the equation

y2 + y = x3 − 216x− 1861

with Cremona label 17739g1 (see [LMF22, label 17739g1]). We have E(Q) ∼= Z⊕ Z/3Z, with a
generator of the free part given by P =

(
23769
400 , 3529853

8000

)
, which is therefore a strongly 3-indivisible

point. Since the Q-isogeny class of E consists of exactly two curves, by [LW15, Theorem 1] we
have H1(H3, E[3]) = Z/3Z. The 3-torsion field is given by Q(z), where z is any root of x6 + 3.
Over this field the point

Q =

(
803

400
z4 − 416

400
z2 +

507

400
,

89133

8000
z4 − 199071

8000
z2 − 95323

8000

)
∈ E(Q(z))

is such that 3Q = P .
A computer search performed with the help of the LMFDB [LMF22] and of Pari/GP [The19]

shows that there are only 20 elliptic curves with conductor less than 4 × 105 satisfying this
property for ` = 3, none of which has conductor less than 17739.

4.3 Divisibility in the `-adic torsion tower

As we have seen in the previous Section, the `-divisibility of a point can increase when we move
along the `-adic torsion field tower. We would now like to give a bound on the extent of this
phenomenon.

Our purpose in this section is to prove Proposition 4.10 (essentially an application of Sah’s
lemma, see [Sah68, Proposition 2.7(b)] and [BR03, Lemma A.2]), which will allow us to give such
a bound in terms of the image of the torsion representation.

Lemma 4.6. Let L be a finite Galois extension of K containing K`n and let G := Gal(L|K).
Assume that `kH1(G,E[`n]) = 0. If α ∈ E(K) is strongly `-indivisible in E(K), then α is not
`k+1-divisible in E(L).

Proof. Applying Lemma 4.3 with M = `k+1 we see that the quotient

E(K) ∩ `k+1E(L)

`k+1E(K)

http://www.lmfdb.org/EllipticCurve/Q/17739g1/
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embeds in H1(G,E[`n]), so it is killed by `k. It follows that `k
(
E(K) ∩ `k+1E(L)

)
is contained

in `k+1E(K). Assuming by contradiction that α ∈ `k+1E(L) we get `kα = `k+1β for some
β ∈ E(K). But then T = `β − α ∈ E[`k](K) is such that α + T ∈ `E(K), contradicting our
assumption that α is strongly `-indivisible.

Lemma 4.7. Assume that for some n0 > 1 we have (1 + `n0) Id ∈ H`n (if n 6 n0 the condition
is automatically satisfied). Then the exponent of H1(H`n , E[`k]) divides `n0 for every k 6 n.

Proof. Let λ = (1 + `n0) Id and let ϕ : H`n → E[`k] be a cocycle. Using that λ is central in H`n

and that ϕ is a cocycle, for any g ∈ H`n we have

gϕ(λ) + ϕ(g) = ϕ(gλ) = ϕ(λg) = λϕ(g) + ϕ(λ),

so

`n0ϕ(g) = (λ− 1)ϕ(g) = gϕ(λ)− ϕ(λ),

that is, `n0ϕ is a coboundary. This proves that `n0H1(H`n , E[`k]) = 0 as claimed.

Lemma 4.8. Assume that E does not have complex multiplication and let n` > 1 be a parameter
of maximal growth for the `-adic torsion representation. Then for every n > n` and for every
g ∈ Mat2(Z`) we have that (Id + `n`g) mod `n is an element of H`n .

Proof. We prove this by induction. For n = n` the statement is trivial, so suppose (Id +`n`g)
mod `n belongs to H`n for some n > n`. Since the map H`n+1 → H`n is surjective we can lift
this element to an element of the form Id +`n`g + `ng′ ∈ H`n+1 , where g′ ∈ Mat2(F`). Since

ker(H`n+1 → H`n) = {Id +`nh | h ∈ Mat2(F`)}

we have that Id−`ng′ is in H`n+1 , hence H`n+1 contains the product

(Id−`ng′)(Id +`n`g + `ng′) ≡ (Id +`n`g) (mod `n+1),

where we use the fact that `2n(g′)2 = `n+n`g′g = 0 since we are working modulo `n+1.

In the special case g = Id, the same result also holds for elliptic curves with complex multi-
plication:

Lemma 4.9. Let E be an arbitrary elliptic curve and let n` > 1 be a parameter of maximal
growth for E (in particular, n` > 2 if ` = 2). Then for every n > n` we have (1 + `n`) Id ∈ H`n .

Proof. In the light of the previous lemma we may assume that E has complex multiplication, so
that the image of the torsion representation is contained in the normaliser of a Cartan subgroup
of GL2(Z`). The equality #H`n+1 = `2#H`n for n > n` is equivalent to

ker (H`n+1 → H`n) = Id +`nT,

where both sides are seen as subsets of {M ∈ Mat2(Z/`n+1Z) : M ≡ Id (mod `n)}, and T is
the tangent space to the image of the Galois representation as introduced in [LP21, Definition
9] and further studied in [LP17, Definition 18]. We proceed by induction, the base case n = n`
being trivial. By surjectivity of H`n+1 → H`n and the inductive hypothesis, we know that
H`n+1 contains an element reducing to (1 + `n`) Id modulo `n, that is, an element of the form
Mn+1 := (1 + `n`) Id +`nt. Here t is an element of T: to see this, notice that Mn+1 is congruent
to the identity modulo `n` , so it cannot lie in the non-trivial coset of the normaliser of a Cartan
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subgroup ([LP17, Theorem 40]), and therefore belongs to the Cartan subgroup itself. But then

Mn+1 is of the form

(
x δy
y x+ γy

)
for appropriate parameters (γ, δ), hence

t =
1

`n

(
x− 1− `n` δy

y (x− 1− `n`) + γy

)
∈ Mat2(F`)

belongs to T by the explicit description given in [LP17, Definition 18]. The equality

ker (H`n+1 → H`n) = Id +`nT

implies that H`n+1 also contains Id−`nt, so it contains

((1 + `n`) Id +`nt)(Id−`nt) ≡ Id−`2nt2 + `n` Id−`n+n`t

≡ (1 + `n`) Id (mod `n+1)

as claimed.

Proposition 4.10. Assume that α is strongly `-indivisible in E(K). Let n` be a parameter
of maximal growth for the `-adic torsion representation. Then for every n the point α is not
`n`+1-divisible in K`n ; equivalently, α is not `n`+1-divisible in K`∞ .

Proof. By Lemma 4.9 the group H`n contains (1 + `n`) Id, so by Lemma 4.7 the exponent of the
group H1(H`n , E[`n]) divides `n` . We conclude by Lemma 4.6.

4.4 The `-adic failure is bounded

In this section we establish some general results that will form the basis of all subsequent argu-
ments (in particular Lemma 4.11 and Proposition 4.12) and use them to show that the `-adic
failure A`(N) can be effectively bounded (Theorem 4.17).

Lemma 4.11. Assume that for some d > 0 the point α ∈ E(K) is not `d+1-divisible over K`∞ .
Then V`∞ contains a vector of valuation at most d. Similarly, if α ∈ E(K) is not `d+1-divisible
over K∞ then W`∞ contains a vector of valuation at most d.

Proof. Assume by contradiction that every element of V`∞ has valuation at least d + 1. Then
the image of V`∞ in E[`d+1] = T`(E)/`d+1T`(E) is zero. As this image is exactly Gal(K`∞,`d+1 |
K`∞), we obtain K`∞,`d+1 = K`∞ , so α is `d+1-divisible in K`∞ , a contradiction.

The second part can be proved in exactly the same way.

The following group-theoretic Proposition will be applied in this section and in Section 7.
In all of our applications the group H will be the image of the `-adic torsion representation
associated with some elliptic curve.

Proposition 4.12. Let ` be a prime number, d be a positive integer, H be a closed subgroup
of GL2(Z`), and A = Z`[H] be the sub-Z`-algebra of Mat2(Z`) topologically generated by the
elements of H. Let V ⊆ Z2

` be an A-submodule of Z2
` , and suppose that V contains at least one

vector of `-adic valuation at most d.

(1) Suppose that H contains {M ∈ Mat2(Z`) : M ≡ Id (mod `n)} for some n > 1. Then V
contains `d+nZ2

` .

(2) Suppose that the reduction of H modulo ` acts irreducibly on F2
` . Then V contains `dZ2

` .
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(3) Let C be a Cartan subgroup of GL2(Z`) with parameters (γ, δ) and let N be its normaliser.
Suppose that H is an open subgroup of N not contained in C, and that H contains {M ∈
C : M ≡ Id (mod `n)} for some n > 1. Then V contains `3n+d+v`(4δ)Z2

` .

Proof. Both the assumptions and the conclusions of the Proposition are invariant under changes

of basis in Z2
` , so we may assume that v = `de1 is in V , where e1 =

(
1
0

)
.

(1) It is clear that A contains `n Mat2(Z`), so we have

V ⊇ A · v ⊇ `n Mat2(Z`) · v = `n+d Mat2(Z`) · e1 = `n+dZ2
` .

(2) Let H` denote the reduction of H modulo `. The condition that H` acts irreducibly on F2
`

implies that there exists M ∈ F`[H`] such that Me1 ≡
(

0
1

)
(mod `). Fix a lift M ∈ A of M ,

which exists because the natural reduction map A = Z`[H] → F`[H`] is clearly surjective.
Then Mv = `dMe1 is a vector whose second coordinate has valuation exactly d and whose
first coordinate has valuation strictly larger than d. It is then immediate to see that v and
Mv, that are contained in V , generate `dZ2

` .

(3) It is enough to show that A contains `3n+v`(4δ) Mat2(Z`), and the conclusion follows as in
(1) above. Suppose first that γ = 0, and let

M0 =

(
x0 −δy0

y0 −x0

)
∈ H \ C and M1 =

(
1 + `nx0 δ`ny0

`ny0 1 + `nx0

)
∈ H.

The existence and the form of such matrices follow from the assumptions and from the
description of Cartan subgroups and their normaliser given in Definition 2.8 and Lemma 2.10.

Then A contains M2 = M1 − Id +`nM0 = 2`n
(
x0 0
y0 0

)
. Let moreover M3 = `n

(
0 δ
1 0

)
,

which is in A since it can be written as

(
1 `nδ
`n 1

)
− Id, where both matrices are in H by

assumption. Then we have

4`2n
(
x2

0 − δy2
0 0

0 0

)
= (M2 − 2y0M3) ·M2 ∈ A

and x2
0 − δy2

0 = −detM0 ∈ Z×` . It follows that A contains 4`2n
(

1 0
0 0

)
, and since Id ∈ A

we have that all diagonal matrices of valuation at least 2n+ v`(4) are in A, which therefore
also contains (

0 0
`3n+v`(4) 0

)
= M3

(
`2n+v`(4) 0

0 0

)
and (

0 `3n+v`(4)δ
0 0

)
= M3

(
0 0
0 `2n+v`(4)

)
.

Together with the diagonal matrices found above, these elements clearly generate the sub-
module `3n+v`(4δ) Mat2(Z`), and we are done. If γ 6= 0, by Remark 2.9 we may assume γ = 1
and ` = 2. In this case let

M0 =

(
x0 + y0 δy0 + x0 + y0

−y0 −x0 − y0

)
∈ H \ C
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and

M1 = Id +`n
(
x0 δy0

y0 x0 + y0

)
∈ H.

Then A contains M2 = M1 − Id +`nM0 = `n
(

2x0 + y0 2δy0 + x0 + y0

0 0

)
. Let moreover

M3 = `n
(
−1 δ
1 0

)
∈ A. Then we have

M2(δM2 − (2δy0 + x0 + y0)M3) = −`2n det(M0)(1 + 4δ)

(
1 0
0 0

)
∈ A,

and using the fact that det(M0) ∈ Z×` (since M0 ∈ H ⊆ GL2(Z`)) we obtain that A contains
all diagonal matrices of valuation at least 2n. We can then conclude as before.

Proposition 4.13. Assume that α is strongly `-indivisible in E(K) and let n` be a parameter
of maximal growth for the `-adic torsion representation.

(1) Assume that E does not have complex multiplication. Then for every k > 1 we have E[`k] ⊆
V`k+2n` .

(2) Assume that E has complex multiplication by A := EndK(E), and that K does not contain
the imaginary quadratic field A ⊗Z Q. Let (γ, δ) be parameters for the Cartan subgroup of
GL2(Z`) corresponding to A. Then for all k > 1 we have E[`k] ⊆ V`k+4n`+v`(4δ) .

Proof. By Remark 2.6, in order to show (1) it is enough to prove that `2n`T`(E) is contained in
V`∞ . To see that this holds, notice that by Lemma 4.11 and Proposition 4.10 there is an element
of valuation at most n` in V`∞ . Now we just need to apply Proposition 4.12(1) with H = H`∞ ,
V = V`∞ and d = n = n`. Part (2) can be proved in the same way using Proposition 4.12(3).

Proposition 4.13 is the main ingredient for the proof of Theorem 4.17 below, and in fact it
implies it directly in case the point α is strongly indivisible. To finish the proof one also needs
to relate the degrees of the Kummer extensions for divisible and indivisible points, which is
accomplished in Lemma 4.16.

In §6 we will show that a näıve analogue of Proposition 4.13 does not hold in case E has
complex multiplication defined over K.

Remark 4.14. Write α = `dβ+Th, where β ∈ E(K) is strongly `-indivisible and Th ∈ E[`h](K)
is a point of order `h, for some h, d > 0. Notice that it is always possible to do so: first, let
β ∈ E(K) and d be such that α = `dβ + T for some T ∈ E(K) of order a power of `, with
d maximal. Assume then by contradiction that β is not strongly `-indivisible. This means
that there are γ, S ∈ E(K) with S of order a power of ` such that β = `γ + S. But then
α = `d(`γ + S) + T = `d+1γ + (`dS + T ), contradicting the maximality of d.

Remark 4.15. Let ĥ be the canonical (Néron-Tate) height on E, as described in [Sil09, Section
VIII.9]. Following [Pet06], it is possible to bound the divisibility parameters d and h in terms of

ĥ(α), the degree of K over Q, the discriminant ∆E of E over K and the Szpiro ratio

σ =

{
1 if E has everywhere good reduction
log |NK/Q(∆E)|
log |NK/Q(NE)| otherwise
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where NE denotes the conductor of E over K. In fact, [Pet06, Theorem 1] gives the bound

h 6 log`
⌊
c1[K : Q]σ2 log

(
c2[K : Q]σ2

)⌋
where c1 = 134861 and c2 = 104613. Alternatively, one could also use the uniform boundedness
of torsion [Mer96, Par96] to give an upper bound on h that only depends on [K : Q].

For the parameter d we can reason as follows. For α = `dβ + Th, by [Sil09, Theorem 9.3] we
have

ĥ(α) = ĥ(`dβ + Th) = ĥ(`dβ) = `2dĥ(β)

so we get d 6
1

2 log `
log

(
ĥ(α)

ĥ(β)

)
. Now in view of [Pet06, Theorem 2] for any non-torsion point

β ∈ E(K) we have

ĥ(β) > B :=
log |NK/Q(∆E)|

1015[K : Q]3σ6 log2(c2[K : Q]σ2)
,

where again c2 = 104613. We thus obtain the effective bound

d 6
1

2 log `
log

(
ĥ(α)

B

)
.

Lemma 4.16. Let α, β ∈ E(K) be points of infinite order such that α = dβ + Th for positive
integers d, h and some Th ∈ E(K)[h]. If N > 1 is a multiple of d then[

KNh

((
N

d

)−1

β

)
: KNh

]
divides

[
KN

(
N−1α

)
: KN

]
,

thus

N2

[KN (N−1α) : KN ]
divides d2 ·

(
N
d

)2[
KNh

((
N
d

)−1
β
)

: KNh

] .
Proof. Notice that

KNh

((
N

d

)−1

β

)
= KNh

(
N−1(dβ)

)
KNh

(
N−1(dβ + Th)

)
= KNh

(
N−1α

)
and thus [

KNh

((
N

d

)−1

β

)
: KNh

]
=
[
KNh(N−1α) : KNh

]
.

It is clear that
[
KNh(N−1α) : KNh

]
divides

[
KN (N−1α) : KN

]
, so we conclude.

Theorem 4.17. Let ` be a prime and assume that EndK(E) = Z (i.e. either E does not have
CM, or it has CM but the complex multiplication is not defined over K). There is an effectively
computable constant a`, depending only on α and on the `-adic torsion representation associated
to E, such that A`(N) divides `a` for all positive integers N .

Moreover, a` is zero for every odd prime ` such that α is `-indivisible and for which the `-adic
torsion representation associated with E is maximal (see Definition 3.2). For the finitely many
remaining primes ` we can take a` as follows: let n` be a parameter of maximal growth for the
`-adic torsion representation and let d be as in Remark 4.14. If E has CM over K, let (γ, δ) be
parameters for the Cartan subgroup of GL2(Z`) corresponding to EndK(E). Then:
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(1) a` = 4n` + 2d if E does not have CM over K;

(2) a` = 8n` + 2v`(4δ) + 2d if E has CM over K.

Proof. Let α = `dβ + Th as described above. Notice that if α is strongly `-indivisible we have
d = 0, and the conclusion follows from Proposition 4.13. If the `-adic torsion representation
is maximal, the fact that a` is zero in the cases stated follows from [JR10, Theorem 5.2 and
Theorem 5.8].

In the general case, let n = v`(N) and notice that the claim is trivial for n 6 d, so we may
assume n > d. By Lemma 4.16, we have that

`2n

[K`n+h(`−nα) : K`n+h ]
divides `2d

`2(n−d)

[K`n+h(`−(n−d)β) : K`n+h ]
,

so in view of Remark 2.1 we are reduced to proving the statement for β instead of α. Since β is
strongly `-indivisible, we can conclude as stated at the beginning of the proof.

The fact that a` is effective follows from the fact that one can effectively compute a parameter
of maximal growth for the `-adic torsion representation (Remark 3.8), an upper bound for the
value of d (Remark 4.15), and the ring EndK(E) ([Ach05], [CMSV19], [Lom19]).

Remark 4.18. Recent results by Cerchia and Rouse [CR21], obtained independently from those
in the present paper, imply that the better bound a` = 3n` + 2d holds in the non-CM case.

5 The adelic failure

In this section we study the adelic failure B`(N), that is, the degree of the intersectionK`n,`n∩KN

over K`n . Notice that this intersection is a finite Galois extension of K`n .

5.1 Intersection of torsion fields in the non-CM case

We first aim to establish certain properties of the intersections of different torsion fields of E,
assuming for this subsection that E does not have complex multiplication over K. Our main
tool is the following result, due to Campagna and Stevenhagen [CS19, Theorem 3.4]:

Theorem 5.1 (Campagna-Stevenhagen). Assume that E does not have complex multiplication.
Let S be the set consisting of the primes ` satisfying one or more of the following three conditions:

(i) ` | 30 disc(K | Q);

(ii) E has bad reduction at some prime of K above `;

(iii) the modulo ` torsion representation is not surjective.

For every ` 6∈ S we have K`n ∩KM = K for all M,n > 1 with ` -M .

Remark 5.2. The finite set S appearing in Theorem 5.1 can be computed explicitly. In fact, it
is well known that one can compute the discriminant of K and the set of primes of bad reduction
of E. An algorithm to compute the set of primes for which the mod ` representation is not
surjective is described in [Zyw15b].

An immediate consequence of the Theorem above is the following corollary, which gives a
slightly more precise version of [Ser97, §3.4, Lemma 6].
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Corollary 5.3. Assume that E does not have complex multiplication and let S be as in Theo-
rem 5.1. Let M be a positive integer and write M = M1M2, where

M1 =
∏
p 6∈S

pep p prime, ep > 0,

M2 =
∏
q∈S

qeq q prime, eq > 0.

Then we have

Gal(KM | K) ∼= GL2 (Z/M1Z)×Gal (KM2
| K) .

Remark 5.4. Let K̃ be the compositum of the fields Kp for all p ∈ S, where S is as in
Theorem 5.1. In the following section it will be important to notice that S is stable under base
change to K̃. More precisely, let S̃ be the set of all primes ` that satisfy one of the following:

(i') ` | 30 disc(K̃ | Q);

(ii') E has bad reduction at some prime of K̃ above `;

(iii') the modulo ` torsion representation attached to E/K̃ is not surjective.

Then S̃ = S.
Indeed, the inclusion S̃ ⊇ S is easy to see: clearly conditions (i) and (iii) imply (i') and (iii')

respectively, so we only need to discuss (ii). Let p be a prime of K (of characteristic `) at which
E has bad reduction, and let q be a prime of K̃ lying over p. We need to show that ` ∈ S̃. If E
has bad reduction at q we have ` ∈ S̃ by (ii'), while if E has good reduction at q then p ramifies
in K̃ by [Sil09, Proposition VII.5.4 (a)], so we have ` | disc(K̃ | Q) and ` is in S̃ by (i').

Conversely, let ` ∈ S̃. If (ii') holds, then clearly also (ii) holds, and ` is in S. Suppose
that (i') holds. If ` divides 30, then it is in S by (1). Otherwise ` divides disc(K̃ | Q), which

by [Ser13, III.§4, Proposition 8] is equal to disc(K | Q)[K̃:K]NK/Q disc(K̃ | K); if ` divides

disc(K | Q), then it is in S by (1), while if it divides disc(K̃ | K) then we have ` ∈ S by [Sil09,
Proposition VIII.1.5(b)]. We may therefore assume that (i') and (ii') do not hold. Since ` is in S̃,
(iii') must hold, that is, the modulo-` torsion representation attached to E/K̃ is not surjective.
We claim that the same is true for E/K. Indeed, if ` is in S this is true by definition, while
if ` 6∈ S the previous corollary shows that K` is linearly disjoint from K̃, so the images of the
modulo-` representations over K and over K̃ coincide.

5.2 The adelic failure is bounded

We now go back to the general case of E possibly admitting complex multiplication.
Fix an integer N > 1 and a prime number ` dividing N . Write N = `nR with ` - R and recall

that the adelic failure B`(N) is defined to be the degree [K`n,`n ∩KN : K`n ]. In this section we
study this failure for N = `nR, starting with a simple Lemma in Galois theory.

Lemma 5.5. Let L1, L2 and L3 be field extensions of K, with L1 ⊆ L2 and L2 Galois over K.
Then the compositum L1(L2 ∩ L3) is equal to the intersection L2 ∩ (L1L3).

Proof. Let G = Gal(K | K) and, for i = 1, 2, 3, let Gi := Gal(K | Li). The claim is equivalent to
G1 ∩ 〈G2, G3〉 = 〈G2, G1 ∩G3〉, where the inclusion “⊇” is obvious. Since L2 | K is Galois, the
Galois group G2 is normal in G, so we have 〈G2, G3〉 = G2 ·G3 and 〈G2, G1∩G3〉 = G2 ·(G1∩G3).
Let then g ∈ G1 ∩ (G2 · G3), so that there are g1 ∈ G1, g2 ∈ G2 and g3 ∈ G3 such that
g = g1 = g2g3. But then g−1

2 g1 = g3 ∈ G3 and, since G2 ⊆ G1, also g−1
2 g1 ∈ G1, so that

g = g2(g−1
2 g1) ∈ G2 · (G1 ∩G3).
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K`nR,`n

K`n,`n K`nR

L := K`n,`n ∩K`nR

K`n KR

F := K`n,`n ∩KR

T := K`n ∩KR

K

Figure 1.1: The situation described in Lemma 5.6 and Proposition 5.7.

We now establish some properties of certain subfields of K`nR,`n .

Lemma 5.6. Setting L := K`n,`n ∩ KN , F := L ∩ KR = K`n,`n ∩ KR, and T := F ∩ K`n =
K`n ∩KR we have:

(1) The compositum FK`n is L.

(2) Gal(F | T ) ∼= Gal(L | K`n); in particular, Gal(F | T ) is an abelian `-group.

(3) F is the intersection of the maximal abelian extension of T contained in K`n,`n and the
maximal abelian extension of T contained in KR.

Proof. (1) By Lemma 5.5 we have FK`n = K`n(K`n,`n ∩KR) = K`n,`n ∩K`nR = L. Part (2)
follows from (1) and standard Galois theory. For (3), notice that F is abelian over T by (2),
so it must be contained in the maximal abelian extension of T contained in K`n,`n and in the
maximal abelian extension of T contained in KR. On the other hand, F cannot be smaller than
the intersection of these abelian extensions, because by definition it is the intersection of K`n,`n

and KR.

Proposition 5.7. The adelic failure B`(N) is equal to [F : T ], where F = K`n,`n ∩ KR and
T = K`n ∩KR.

Proof. Let as above L = K`n,`n ∩K`nR. We have

Gal(K`n,`n |L) ∼= Gal(K`nR,`n |K`nR),
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so we get

[K`n,`n : K`n ] = [K`n,`n : L][L : K`n ] = [K`nR,`n : K`nR][L : K`n ]

and we conclude by Lemma 5.6(b).

In what follows we will need to work over a certain extension K̃ of K; this extension will
depend on the prime `. More precisely, we give the following definition.

Definition 5.8. Let K̃ be the finite extension of K defined as follows:

(i) If E has complex multiplication, we take K̃ to be the compositum of K with the CM field
of E. This is an at most quadratic extension of K. Notice that in this case by [LR18,
Lemma 2.2] we have K̃n = Kn for every n > 3.

(ii) If E does not have CM and ` is not one of the primes in the set S of Theorem 5.1, we just
let K̃ = K. Notice that this happens for all but finitely many primes `.

(iii) If E does not have CM and ` is one of the primes in the set S of Theorem 5.1, we let K̃ be
the compositum of all the Kp for p ∈ S. Notice that in this case K̃` = K̃.

We shall use the notation K̃M (respectively K̃M,N ) for the torsion (respectively Kummer)

extensions of K̃. We shall also write

H̃`n := Im
(
τ`n : Gal(K | K̃)→ Aut(E[`n])

)
∼= Gal

(
K̃`n | K̃

)
,

Ṽ`n := Im
(
κ`n : Gal(K | K̃`n)→ E[`n]

)
∼= Gal

(
K̃`n,`n | K̃`n

)
for the images of the `n-torsion representation and of the (`n, `n)-Kummer map attached to
E/K̃. Finally, we let ñ` be the minimal parameter of maximal growth for the `-adic torsion
representation over K̃. Notice that, thanks to Lemma 3.10, we have ñ` 6 n` + v`([K̃ : K]).

Proposition 5.9. The extension F ′ := K̃`n,`n ∩ K̃R is abelian over K̃.

Proof. This is well known if E has complex multiplication because then K̃R is itself abelian over
K̃, see for example [Sil94, Theorem II.2.3]. In case E does not have complex multiplication and
` is not in the set S of Theorem 5.1, this follows easily by considering the diagram

K̃`n,`n

K̃`nF
′

K̃`n F ′

K̃

In fact, since K̃`n ∩ F ′ = K̃ by Theorem 5.1 (notice that in this case K̃ = K), we have that
Gal(F ′ | K̃) ∼= Gal(K̃`nF

′ | K̃`n) is a quotient of Ṽ`n , hence abelian. Thus we can assume that
E does not have CM and that ` is in the set S of Theorem 5.1.
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Notice that F ′ is a Galois extension of K̃ with degree a power of `, since the same is true
for K̃`n,`n | K̃ and F ′ ⊆ K̃`n,`n . Letting r denote the radical of R, the degree of [F ′ : F ′ ∩ K̃r],

which is still a power of `, divides [K̃R : K̃r], which is a product of primes dividing R. So since
` - R we obtain [F ′ : F ′ ∩ K̃r] = 1, that is K̃`n,`n ∩ K̃R = K̃`n,`n ∩ K̃r, and we may assume that
R is squarefree. Write now R = R1R2, where R1 is the product of the prime factors of R that
are not in S and R2 is the product of the prime factors of R that belong to S. By definition of
K̃ we have K̃R = K̃R1

, so we may further assume that no prime p ∈ S divides R. By Corollary
5.3 we then have Gal(K̃R | K̃) ∼= GL2(Z/RZ).

Since F ′ ⊆ K̃R, there must be a normal subgroup D = Gal(K̃R | F ′) E GL2(Z/RZ) of
index a power of `. In order to conclude we just need to show that D contains the subgroup
SL2(Z/RZ), for then Gal(F ′ | K̃) ∼= GL2(Z/RZ)/D is abelian.

Write SL2(Z/RZ) ∼=
∏
p|R SL2(Fp) and consider the intersection Dp := D∩SL2(Fp), which is

a normal subgroup of SL2(Fp). Here we identify SL2(Fp) with the corresponding direct factor of
SL2(Z/RZ). The quotient SL2(Fp)/Dp cannot have order a power of ` unless it is trivial (recall
that in our case p > 5), so we deduce that D ⊇ SL2(Fp). As this is true for every p | R, we have
D ⊇ SL2(Z/RZ), and we are done.

In what follows, whenever A is an abelian group and Q is a group acting on A, we denote
by [A,Q] the subgroup of A generated by elements of the form gv − v for v ∈ A and g ∈ Q. For
example, we will consider the case A = Ṽ`n and Q = H̃`n .

Lemma 5.10. Let

1→ A→ G→ Q→ 1

be a short exact sequence of groups, with A abelian, so that Q acts naturally on A. Let Gab

and Qab be the maximal abelian quotients of G and Q respectively. Then A/[A,Q] surjects onto
ker(Gab → Qab).

Proof. We have an injective map of short exact sequences

1 A ∩G′ G′ Q′ 1

1 A G Q 1

from which we get the exact sequence

1→ A

A ∩G′
→ Gab → Qab → 1

and since [A,Q] ⊆ A ∩ G′ we conclude that A/[A,Q] surjects onto A/A ∩ G′ = ker(Gab →
Qab).

Proposition 5.11. The adelic failure B`(N) divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

Proof. Let J1 and J2 be the maximal abelian extensions of K̃ contained in K̃`n and K̃`n,`n respec-

tively. Then we have Gal(J1 | K̃) = H̃ab
`n and Gal(J2 | K̃) = G̃ab

`n , where G̃`n = Gal(K̃`n,`n | K̃).

Notice that [J2 : J1] = #W , where W = ker(G̃ab
`n → H̃ab

`n ) is a quotient of Ṽ`n/[Ṽ`n , H̃`n ] by

Lemma 5.10. Let moreover F ′ := K̃`n,`n ∩ K̃R and T ′ := K̃`n ∩ K̃R. By Proposition 5.9 we have
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F ′ ⊆ J2 and clearly also T ′ ⊆ J1 (indeed T ′ is abelian over K̃ since it is a sub-extension of F ′).
Consider the compositum J1F

′ inside J2.

J2

J1F
′

J1 F ′

K̃`

It is easy to check that F ′ ∩ J1 = T ′, so we have that [F ′ : T ′] = [J1F
′ : J1] divides [J2 : J1],

which in turn divides Ṽ`n/[Ṽ`n , H̃`n ].
Now applying Proposition 5.7 with K̃ in place of K we get that

[K̃`n,`n : K̃`n ]

[K̃`nR,`n : K̃`nR]
divides [F ′ : T ′],

and using that [K̃`nR,`n : K̃`nR] divides [K`nR,`n : K`nR] it is easy to see that

[K`n,`n : K`n ]

[K`nR,`n : K`nR]
divides [K̃ : K] · [K̃`n,`n : K̃`n ]

[K̃`nR,`n : K̃`nR]
.

We conclude that

B`(N) =
[K`n,`n : K`n ]

[K`nR,`n : K`nR]
divides [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

So we are left with giving an upper bound on the ratio #Ṽ`n/#[Ṽ`n , H̃`n ]: this is achieved in
the following Proposition.

Proposition 5.12. For every n, the order of Ṽ`n/[Ṽ`n , H̃`n ] divides `2ñ` , where ñ` is the minimal
parameter of maximal growth for the `-adic torsion representation of E/K̃.

Proof. By Lemma 4.9, the group H̃`n contains (1 + `ñ`) Id. This implies that for every v ∈ Ṽ`n
the group [Ṽ`n , H̃`n ] contains[

v, (1 + `ñ`) Id
]

= (1 + `ñ`) Id ·v − v = `ñ`v,

that is, [Ṽ`n , H̃`n ] contains `ñ` Ṽ`n . The claim now follows from the fact that Ṽ`n is generated
over Z/`nZ by at most two elements.

Lemma 5.13. Assume that ` > 5 is unramified in K | Q and that the image of the mod ` torsion
representation is GL2(F`) (so in particular E does not have CM over K). Assume moreover that
α is `-indivisible. Then V`n = [V`n , H`n ].
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Proof. Since H ′`∞ is a closed subgroup of SL2(Z`) whose reduction modulo ` contains H ′` =
GL2(F`)′ = SL2(F`), by Lemma 3.9 the group H`∞ contains SL2(Z`). The assumption that ` is
unramified in K implies that det(H`∞) = Z×` , which together with the inclusion SL2(Z`) ⊆ H`∞

implies H`∞ = GL2(Z`), and in particular H`n = GL2(Z/`nZ). By [JR10, Theorem 5.2] we have
V`n = (Z/`nZ)2, so it is enough to consider

g1 :=

(
1 1
0 1

)
∈ H`n , g2 :=

(
1 0
1 1

)
∈ H`n , v :=

(
1
1

)
∈ V`n

to conclude that(
1
0

)
= g1v − v ∈ [V`n , H`n ] and

(
0
1

)
= g2v − v ∈ [V`n , H`n ],

so that V`n ⊆ [V`n , H`n ].

Lemma 5.14. Let E/K be an elliptic curve such that EndK(E) is an order A in the imaginary
quadratic field Q(

√
−d). Let ` > 3 be a prime unramified both in K and in Q(

√
−d), and suppose

that E has good reduction at all places of K of characteristic `. Then V`n = [V`n , H`n ] and
Ṽ`n = [Ṽ`n , H̃`n ].

Proof. By [Lom17, Theorem 1.5], the image of the `-adic representations attached to both E/K
and E/K̃ contains (A ⊗ Z`)×, hence in particular it contains an operator that acts as mul-
tiplication by 2 on E[`n] for every n. Let λ be such an operator: then [V`n , H`n ] contains
[V`n , λ] = {λv − v

∣∣ v ∈ V`n} = V`n as claimed. The case of Ṽ`n is similar.

Theorem 5.15. Let ` be a prime. There is a constant b`, depending only on the p-adic torsion
representations associated with E for all the primes p, such that B`(N) divides `b` for all positive
integers N . Moreover,

(1) Suppose that E does not have complex multiplication over Q. Then b` is zero whenever
the following conditions all hold: α is `-indivisible, ` > 5 is unramified in K | Q, the
mod ` torsion representation is surjective, and E has good reduction at all places of K of
characteristic `.

(2) Suppose EndK(E) is an order in the imaginary quadratic field Q(
√
−d). Then b` is zero

whenever the following conditions all hold: ` > 3 is a prime unramified both in K and in
Q(
√
−d), and E has good reduction at all places of K of characteristic `.

Both in the CM and non-CM cases, for the finitely many remaining primes ` we can take

b` = 2n` + 3v`

(
[K̃ : K]

)
, where K̃ is as in Definition 5.8 and n` is a parameter of maximal

growth for the `-adic torsion part.

Proof. Let n be the `-adic valuation of N . By Proposition 5.11, the adelic failure B`(N) divides

[K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
.

(1) Suppose that E does not have CM over Q, that α is `-indivisible, that ` > 5 is unramified in
K | Q, that the mod ` torsion representation is surjective, and that E has good reduction at
all places of K of characteristic `. Under these assumptions, the prime ` does not belong to

the set S of Theorem 5.1, so we have K̃ = K and [K̃ : K] ·# Ṽ`n

[Ṽ`n , H̃`n ]
is simply #

V`n

[V`n , H`n ]
.

We conclude because this quotient is trivial by Lemma 5.13.
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(2) In the CM case, the conclusion follows from Lemma 5.14 since ` - [K̃ : K] 6 2.

For all other primes, combining Proposition 5.11 and Proposition 5.12 we get that B`(N)
divides [K̃ : K] · `2ñ` and we conclude using Lemma 3.10.

Remark 5.16. The proof shows that the inequality

v`(B`(N)) 6 2n` + 3v`

(
[K̃ : K]

)
holds for every prime ` and for every rational point α ∈ E(K). In other words, for a fixed prime
` the adelic failure can be bounded independently of the rational point α.

We can finally prove our first Theorem from the introduction:

Proof of Theorem 1.1. By Remark 2.1, Theorem 1.1 follows from Theorems 4.17 and 5.15 by
taking C :=

∏
` `
a`+b` .

Remark 5.17. Theorem 1.1 is completely effective, in the following sense: the quantities a` and
b` can be computed in terms of [K̃ : K], n`, and the divisibility parameter d. The integer d can
be bounded effectively in terms of the height of α and of standard invariants of the elliptic curve,
as showed in Remark 4.15. The remaining quantities [K̃ : K] and n` can be bounded effectively
in terms of [K : Q] and of the height of E, as shown in [Lom15].

6 A counterexample in the CM case

We give an example showing that Proposition 4.13 does not hold in the CM case when ` is split
in the field of complex multiplication, and that in fact in this case there can be no uniform lower
bound on the image of the Kummer representation depending only on the image of the torsion
representation, even when α is strongly `-indivisible.

Let E/Q be an elliptic curve with complex multiplication over Q by the imaginary quadratic
field F . Let α ∈ E(Q) be such that the `n-arboreal representation attached to (E,α) maps

onto (Z/`nZ)
2 o N`n for every n > 1, where N`n is the normaliser of a Cartan subgroup C`n

of GL2(Z/`nZ). Suppose furthermore that ` is split in F and does not divide the conductor
of the order EndQE ⊆ OF . Such triples (E,α, `) exist: by [JR10, Example 5.11] we can take

E : y2 = x3 + 3x (which has CM by Z[i]), α = (1,−2) and ` = 5 (which splits in Z[i]). Notice
that for this elliptic curve and this α the same property holds for every ` ≡ 1 (mod 4): [Lom17,
Theorem 1.5 (2)] implies that for all ` > 5 the image of the Galois representation is the full
normaliser of a Cartan subgroup, at which point surjectivity of the Kummer representation
follows from [JR10, Theorem 5.8].

Consider now the image of the arboreal representation associated with (E/F, α, `). Base-
changing E to F has the effect of replacing the normaliser of the Cartan subgroup with Cartan
itself: more precisely we have ω`n (Gal(F`n,`n | F )) = (Z/`nZ)

2 o C`n for every n > 1. As ` is
split in the quadratic ring EndQ(E), so is the Cartan subgroup C`n , and therefore we can assume
– choosing a different basis for E[`n] if necessary – that C`n is the subgroup of diagonal matrices
in GL2(Z/`nZ). Fix now a large n and let

B`n =
{

(t,M) ∈ (Z/`nZ)
2 o C`n : t ≡ (∗, 0) (mod `n−1)

}
.
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Using the explicit group law on (Z/`nZ)2 o C`n one checks without difficulty that B`n is a

subgroup of (Z/`nZ)
2 oC`n : indeed, given two elements g1 = (t1,M1) and g2 = (t2,M2) in B`n ,

we have
g1 · g2 = (t1,M1) · (t2,M2) = (t1 +M1t2,M1M2),

and (since M1 is diagonal) the second coordinate of t1 + M1t2 is a linear combination (with
Z/`nZ-coefficients) of the second coordinates of t1, t2, hence is zero modulo `n−1. Finally, let

K ⊂ F`n,`n be the field corresponding by Galois theory to the subgroup B`n of (Z/`nZ)
2oC`n ∼=

Gal(F`n,`n | F ).
We now study the situation of Proposition 4.13 for the elliptic curve E/K and the point α.

By construction, the image of the `n−1-torsion representation attached to (E/K, `) is C`n−1 , so
the parameter of maximal growth can be taken to be n` = 1. We claim that α ∈ E(K) is strongly
`-indivisible. The modulo-` torsion representation is surjective onto C`, so that in particular no
`-torsion point of E is defined over K, and strongly `-indivisible is equivalent to `-indivisible. To
see that this last condition holds, notice that if α were `-divisible then we would have K`,` = K`.
However this is not the case, because by construction Gal(K`,` | K`) = {t ∈ (Z/`Z)2 : t ≡ (∗, 0)
(mod `)} has order `. Finally, for k = n− 3 we have

V`k+2n` = V`n−1 = {t ∈ (Z/`n−1Z)2 : t ≡ (∗, 0) (mod `n−1)},

which is very far from containing E[`k] – in fact, the index of V`k+2n` in E[`k+2n` ] can be made
arbitrarily large by choosing larger and larger values of n. Notice that in any such example the
`-adic representation will be surjective onto a split Cartan subgroup of GL2(Z`).

7 Uniform bounds for the adelic representation

Our aim in this section is to show:

Theorem 7.1. There is a positive integer C with the following property: for every elliptic curve
E/Q and every strongly indivisible point α ∈ E(Q), the image W∞ of the Kummer map associated
with (E/Q, α) has index dividing C in

∏
` T`(E).

This result immediately implies Theorem 1.2:

Proof of Theorem 1.2. By Remark 2.6, for every N |M the ratio
N2

[QM,N : QM ]
divides

N2

[Q∞,N : Q∞]
=
[
(Ẑ/N Ẑ)2 : W∞/NW∞

]
,

which in turn divides [Ẑ2 : W∞].

Remark 7.2. The assumption of strong indivisibility of the point α is necessary. In fact, one
can take a point α that is divisible in E(Q) by an arbitrarily high power of some prime `, and
thus get an index divisible by an arbitrarily large power of `.

However, one can recover a similar result for divisible points allowing the constant C to
depend on the largest integer d such that α = dβ+T for some β ∈ E(Q) and some T ∈ E(Q)tors.
In fact, Lemma 4.16 tells us that in this situation the index of the Kummer representation
associated with α divides d2 times the index of the Kummer representation associated with β.

As in Subsection 3.3, we will denote by T0 the finite set of primes

T0 := {p prime | p 6 17} ∪ {37}.
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7.1 Bounds on cohomology groups

Let E/Q be an elliptic curve and N1, N2 be positive integers with N1 | N2. The first step in
the proof of Theorem 7.1 is to bound the exponent of the cohomology group H1(HN2 , E[N1]).
In the course of the proof we shall need the following technical result, which will be proved in
Section 7.2.

Proposition 7.3. There is a universal constant e satisfying the following property. Let E/Q be
a non-CM elliptic curve, N a positive integer and ` a prime factor of N . Let `k be the largest
power of ` dividing N and J = Gal(QN | Q`k)/HN . Consider the action of HN on Hom(J,E[`k])
defined by (hψ)(x) = hψ(h−1xh) for all h ∈ HN , ψ : J → E[`k] and x ∈ J . Then the exponent

of Hom
(
J,E[`k]

)HN
divides e.

Proposition 7.4. There is a positive integer C1 with the following property. Let E/Q be an
elliptic curve, N1 and N2 be positive integers with N1 | N2. Then the exponent of H1(HN2

, E[N1])
divides C1.

Proof. We can prove the statement separately for CM and non-CM curves, and then conclude
by taking the least common multiple of the two constants obtained in the two cases.

Assume first that E/Q has CM over Q. Let F be the CM field of E, let OF be the ring of inte-
gers of F and O` := OF⊗ZZ`. By [Lom17, Theorem 1.5] we have d :=

[∏
`O
×
` : H∞ ∩

∏
`O
×
`

]
6

6. In particular all the d-th powers of elements in
∏
`O
×
` are in H∞, hence we have Ẑ×d ⊆ H∞ ⊆∏

` GL2(Z`) and H∞ contains the nontrivial homothety λ = (λ`), where λ2 = 3d and λ` = 2d for
` 6= 2. By Sah’s Lemma [BR03, Lemma A.2] we have (λ − 1)H1(HN2

, E[N1]) = 0. Notice that
the image of λ− 1 in Z` is nonzero for all `, and that it is invertible for almost all `. The claim
follows from the fact that d is bounded.

Assume now that E does not have complex multiplication over Q. As cohomology commutes
with finite direct products we have

H1(HN2
, E[N1]) ∼= H1

HN2
,
⊕
`v|N1

E[`v]

 ∼= ⊕
`v|N1

H1 (HN2
, E[`v]) .

Fix an ` in this sum and let J = Gal(QN2
| Q`k)/HN2

, where `k is the largest power of ` dividing
N2. By the inflation-restriction sequence we get

0→ H1(HN2
/J,E[`v]J)→ H1(HN2

, E[`v])→ H1(J,E[`v])HN2 ;

since by definition J fixes E[`v], this is the same as

0→ H1(H`k , E[`v])→ H1(HN2
, E[`v])→ Hom(J,E[`v])HN2 .

It is clear that the exponent of H1(HN2
, E[N1]) is the least common multiple of the exponents

of the direct summands H1 (HN2
, E[`v]) for ` | N1, so we can focus on one such summand at

a time. Furthermore, the above inflation-restriction exact sequence shows that the exponent of
H1(HN2 , E[`v]) divides the product of the exponents of H1(H`k , E[`v]) and of Hom(J,E[`v])HN2 .
It is enough to give a uniform bound for the exponents of these two cohomology groups.

(i) H1(H`k , E[`v]) Assume first that ` 6∈ T0. By Theorem 3.14, H` is not contained in a

Borel subgroup of GL2(F`), so by [LW15, Lemma 4] it contains a nontrivial homothety.
By Lemma 3.17 the image H`∞ of the `-adic representation contains a homothety that is
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non-trivial modulo `, so by Sah’s Lemma [BR03, Lemma A.2] we have H1(H`k , E[`v]) = 0.
For ` ∈ T0 let n` be a universal bound on the parameter of maximal growth of the `-adic
representation, as in Corollary 3.13. By Lemma 4.9 we have (1 + `n`) Id ∈ H`k , and from
Lemma 4.7 we obtain that the exponent of H1(H`k , E[`v]) divides `n` .

(ii) Hom(J,E[`v])HN2 As v 6 k, this group is contained in Hom(J,E[`k])HN2 , whose exponent

is uniformly bounded by Proposition 7.3. Notice that the action of HN2
on Hom(J,E[`k])

is precisely that considered in Proposition 7.3 by well-known properties of the inflation-
restriction exact sequence (see e.g. [Ros95, Theorem 4.1.20]).

Proposition 7.4 can be restated in terms of H1(H∞, E(Q)tors).

Theorem 7.5. There is a positive integer C1 such that, for any elliptic curve E/Q, the exponent
of H1(H∞, E(Q)tors) divides C1.

Proof. By [NSW13, Proposition 1.2.6] we have

H1(H∞, E(Q)tors) ∼= lim−→
N

H1(HN , E[N ]),

so the result follows from Proposition 7.4.

Remark 7.6. Let m := [GL2(Ẑ) : H∞]. By basic group theory, there is a normal subgroup B of

GL2(Ẑ) contained in H∞ and having index dividing m!. It follows that the m!-th power of any

element of GL2(Ẑ) is in B, hence in H∞, and in particular H∞ contains Ẑ×m! ·Id. An application
of Sah’s lemma then shows that the exponent of H1(H∞, E(Q)tors) can be upper-bounded purely
in terms of m. A positive answer to Serre’s uniformity question for elliptic curves over Q would
imply that there are only finitely many possibilities for the index m (see for example [Zyw15c]),
so Theorem 7.5 would immediately follow.

Corollary 7.7. Let C1 be as in Proposition 7.4. Let E/Q be an elliptic curve and let α ∈ E(Q)
be a strongly indivisible point. If α is divisible by n > 1 over Q∞, then n | C1.

Proof. Without loss of generality we can assume that n = `e is a power of a prime `. Since Q∞ is
the union of the torsion fields QN , there exists N such that α is divisible by `e over QN , and we
may assume that `e divides N . The claim then follows from Lemma 4.6, since by Proposition 7.4
the exponent of H1(Gal(QN | Q), E[`e]) is a power of ` that divides C1.

Lemma 7.8. Let C1 be as in Proposition 7.4. The following hold for every prime `:

(1) The Z`-module W`∞ , considered as a submodule of Z2
` , contains a vector of valuation at most

v`(C1).

(2) Suppose that E does not have CM over Q and let n` be a parameter of maximal growth for
the `-adic torsion representation. Then W`∞ contains `n`+v`(C1)T`(E).

(3) If E[`] is an irreducible H`-module, then W`∞ contains `v`(C1)T`(E).

(4) Suppose that E has CM over Q and let (γ, δ) be parameters for the Cartan subgroup of
GL2(Z`) corresponding to EndQ(E). If n` is a parameter of maximal growth for the `-adic

torsion representation, then W`∞ contains `3n`+v`(4δC1)T`(E).
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Proof. Part (1) follows from Lemma 4.11, since by Corollary 7.7 the point α is not divisible by
`v`(C1)+1 over Q∞. Parts (2), (3) and (4) then follow from Proposition 4.12 (for part (4) observe
that no elliptic curve over Q has CM defined over Q).

We can now prove the main Theorem of this section.

Proof of Theorem 7.1. As already explained, we have W∞ =
∏
`W`∞ , so we obtain[∏

`

T`(E) : W∞

]
=
∏
`

[T`(E) : W`∞ ].

Let
T1 = T0 ∪ {` prime | ` divides C1} ∪ {19, 43, 67, 163} .

Notice that by Theorem 3.14 for ` 6∈ T1 there is no elliptic curve over Q with a rational subgroup
of order `. By Lemma 7.8 (3), for ` 6∈ T1 we have W`∞ = T`(E), so[∏

`

T`(E) : W∞

]
=
∏
`∈T1

[T`(E) : W`∞ ]. (7.1)

Now it is enough to prove the Theorem separately in the CM and in the non-CM case, and
then take the least common multiple of the two constants obtained.

Suppose first that E does not have CM over Q. Applying Lemma 7.8(2) we see that [T`(E) :
W`∞ ] divides `2(n`+v`(C1)), where n` is a parameter of maximal growth for the `-adic torsion for
E. By Theorem 3.11 this can be bounded uniformly in E. Since C1 does not depend on E, each
factor of the right hand side of (7.1) is uniformly bounded.

Assume now that E has complex multiplication over Q and let (γ, δ) be parameters for the
Cartan subgroup of GL2(Z`) corresponding to EndQ(E). Applying Lemma 7.8(4), we see that

[T`(E) : W`∞ ] divides `2(3n`+v`(4δC1)), where n` is a parameter of maximal growth for the `-adic
torsion representation for E, which is uniformly bounded by Corollary 3.13. It remains to show
that v`(δ) can be bounded uniformly as well. This follows from the fact that δ only depends
on the Q-isomorphism class of E, and that there are only finitely many rational j-invariants
corresponding to CM elliptic curves.

7.2 Proof of Proposition 7.3

Recall the setting of Proposition 7.3: E/Q is a non-CM elliptic curve, N is a positive integer, and
` is a prime factor of N . Let `k be the largest power of ` dividing N and J = Gal(QN | Q`k)/HN .

The question is to study the exponent of the group Hom
(
J,E[`k]

)HN
. In order to do this, we

shall study the conjugation action of g ∈ HN on the abelianisation of J . More generally, we shall
also consider the conjugation action of elements in GL2(Z/NZ) that normalise J .

It will be useful to work with a certain subgroup J(2) of J . More generally, we introduce the
following notation.

Definition 7.9. Let G be a group and M a positive integer. We denote by G(M) the subgroup
of G generated by

{
gM | g ∈ G

}
.

Lemma 7.10. The subgroup J(2) is normal in J , the quotient group J/J(2) has exponent at
most 2, J(2) is stable under the conjugation action of HN , and

exp Hom
(
J,E[`k]

)HN | 2 exp Hom
(
J(2), E[`k]

)HN
.
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Proof. Clearly J(2) is a characteristic subgroup of J , so it is normal in J and stable under the con-
jugation action of HN on J . Given a coset hJ(2) ∈ J/J(2) we have (hJ(2))2 = h2J(2) = J(2)
since h2 ∈ J(2) by definition, so the quotient J/J(2) is killed by 2. Finally, take a homo-
morphism ψ : J → E[`k] stable under the conjugation action of HN and denote by d the

exponent of the abelian group Hom
(
J(2), E[`k]

)HN
. The restriction of ψ to J(2) is an ele-

ment of Hom
(
J(2), E[`k]

)HN
, so it satisfies dψ|J(2) = 0, and thus given any h ∈ J we have

dψ|J(2)(h
2) = 0. This implies that for every h ∈ J we have 2dψ(h) = 0, hence ψ is killed by 2d.

Since this is true for all ψ, the claim follows.

We will also need the following two simple lemmas:

Lemma 7.11. Let E/Q be an elliptic curve and let M > 37 be an integer. If ` > M + 1 is a
prime number, then H`∞(M) contains a homothety λ Id with λ 6≡ 1 (mod `).

Proof. By Corollary 3.16, since ` > M + 1 > 37, the image of the modulo-` representation
contains all the homotheties. In particular, if µ ∈ F×` is a generator of the multiplicative group
F×` , then H` contains µ Id, so by Lemma 3.17 H`∞ contains µ Id, where µ ∈ Z×` is congruent
to µ modulo `. So H`∞(M) contains µM Id, which is nontrivial modulo ` since µ has order
`− 1 > M .

Lemma 7.12. Let p be a prime and let n be a positive integer (with n > 2 if p = 2). For
every positive integer k let Uk =

{
x ∈ Zp | x ≡ 1 (mod pk)

}
. Let M be a positive integer. Then{

xM | x ∈ Un
}
⊇ Un+vp(M).

Proof. Let y ∈ Un+vp(M) and let a = y−1. By [Coh07, Corollary 4.2.17 and Corollary 4.2.18(1)],
the p-adic integer x = exp(M−1 log y) is well defined and satisfies the inequality vp(x − 1) >
vp(M

−1a) > n. Therefore x ∈ Un and clearly xM = y.

We will derive Proposition 7.3 from the following statement:

Proposition 7.13. There is a universal constant M with the following property. For every
elliptic curve E/Q, every positive integer N , every prime power `k dividing N , and every g ∈ HN ,
the conjugation action of gM on the abelianisation of J(2) is trivial.

Proof of Proposition 7.13 =⇒ Proposition 7.3. By Lemma 7.10 it is enough to prove Proposi-
tion 7.3 with J replaced by J(2). Let ψ ∈ Hom

(
J(2), E[`k]

)
: then as E[`k] is abelian ψ factors

through J(2)ab.

For every g ∈ HN , every ψ ∈ Hom
(
J(2), E[`k]

)HN
and every h ∈ J(2) we have

ψ(h) = gM · ψ(g−MhgM ) = gM · ψ(h),

where the first equality holds because ψ is HN -invariant and the second because the automor-
phism induced by gM on J(2)ab is trivial by Proposition 7.13. This means that the image of ψ
is contained in E[`k]HN (M). Since the action of HN on E[`k] factors via the canonical projection
HN → GL2(Z/`kZ), this is the same as saying that the image of ψ is contained in the subgroup
of E[`k] fixed under H`k(M). It remains to show that the exponent of E[`k]H`k (M) is uniformly
bounded, and trivial for ` sufficiently large.

To see this, recall that by Theorem 3.11 there exists an integer n > 1, independent of E, such
that H`k contains Id +`n Mat2(Z/`kZ) (and we have n > 2 if ` = 2). By Lemma 7.12, for every
E/Q the group H`k(M) contains all scalar matrices in Mat2(Z/`kZ) that are congruent to the
identity modulo `n+v`(M). We claim that the exponent of E[`k]H`k (M) divides `n+v`(M). In fact,



7. UNIFORM BOUNDS FOR THE ADELIC REPRESENTATION 49

by what we have seen H`k(M) contains (1 + `n+v`(M)) Id, so E[`k]H`k (M) is in particular fixed
by (1 + `n+v`(M)) Id, hence it is contained E[`n+v`(M)].

Finally, we show that Hom(J,E[`k])HN is trivial for ` > M + 1. Since ` > 2, by Lemma 7.10
it is enough to show that Hom(J(2), E[`k])HN is trivial. As above, the image of any HN -
stable homomorphism from J(2) to E[`k] is contained in the H`k(M)-fixed points of E[`k]. By
Lemma 7.11, H`k(M) contains a homothety which is nontrivial modulo `, so we are done since
the only fixed point of this homothety is 0.

We now turn to the proof of Proposition 7.13. We start by showing that we may assume
N to be of the form `k ·

∏
p|N,p6=` p. To see this, let N = `k

∏
p|N,p6=` p

ep be arbitrary and let

N ′ := `k
∏
p|N,p6=` p. There is an obvious reduction map J → Gal(QN ′ | Q`k). The kernel K

of this map is a subgroup of J whose order is divisible only by primes p | N, p 6= `. Recall
that we will be considering Hom(J,E[`k])HN . Let ψ : J → E[`k] be a homomorphism: we
claim that ψ factors via the quotient Gal(QN ′ | Q`k). Indeed, all the elements in K have order
prime to `, hence they must go to zero in E[`k]. Therefore we may assume N = N ′, that is,
N = `k ·

∏
p|N,p6=` p.

We identify HN with a subgroup of GL2(Z/`kZ) ×
∏
p|N,p6=` GL2(Z/pZ) and J with the

subgroup of HN consisting of elements having trivial first coordinate, and for g ∈ HN we write
g = (g`, gp1

, . . . , gpr ) with g` ∈ GL2(Z/`kZ) and gpi ∈ GL2(Z/piZ). Finally, for p | N , p 6= `
we denote by πpi : HN → GL2(Z/piZ) the projection on the factor corresponding to pi, and we
denote by π` : HN → GL2(Z/`kZ) the projection on the factor corresponding to `.

Lemma 7.14. Let p be a prime factor of N with p > 7, p 6= `. Suppose that the modulo-p
representation attached to E/Q is surjective. Then J(2) contains {1}× · · ·× {1}×SL2(Z/pZ)×
{1} × · · · × {1}.

Proof. Clearly PSL2(Fp) occurs in HN . Hence it must occur either in J or in HN/J , but the
latter is isomorphic to a subgroup of GL2(Z/`kZ) with ` 6= p, so it must occur in J . Consider
the kernel of the projection J →

∏
q|N,q 6=p GL2(Z/qZ): then PSL2(Fp) must occur either in this

kernel or in
∏
q|N,q 6=p GL2(Z/qZ), but the latter case is impossible. Using Lemma 3.18, it follows

immediately that J contains {1} × · · · × {1} × SL2(Z/pZ) × {1} × · · · × {1}. We conclude by
noting that SL2(Fp) is generated by its squares.

Lemma 7.15. Let g ∈ HN and h ∈ J(2). Then gh ∈ HN , and the automorphisms of J(2)ab

induced by g and by gh coincide.

Proof. As J(2) is a subgroup of HN , the fact that gh ∈ HN is obvious. For the second statement,
notice that for every x ∈ J(2) the element (gh)−1x(gh) differs from g−1xg by multiplication by

h−1(g−1x−1g)−1h(g−1x−1g),

which is a commutator in J(2). Hence the classes of (gh)−1x(gh) and g−1xg are equal in J(2)ab.

Lemma 7.16. For each p | N, p 6= `, the component gp of g along GL2(Z/pZ) normalises
πp(J(2)) in GL2(Z/pZ).

Proof. Since HN normalises J(2) by Lemma 7.10, we have πp(g
−1J(2)g) = πp(J(2)). On the

other hand, πp(g
−1J(2)g) = πp(g)−1πp(J(2))πp(g), so that as desired we obtain g−1

p πp(J(2))gp =
πp(J(2)).
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Corollary 7.17. Let p1, . . . , ps > 7 be primes all different from ` and such that the mod-pi
representation attached to E/Q is surjective for each pi. Let g ∈ HN and let ĝ be the element
of GL2(Z/NZ) obtained by replacing every pi-component (for i = 1, . . . , s) of g by Id. Then ĝ2

normalises J(2), and it induces on J(2)ab the same conjugation action as g2.

Proof. By Lemma 7.15, if we multiply g2 by any element of J(2) the conjugation action on J(2)ab

does not change. By construction, the determinant of πpi(g
2) = g2

pi is a square in F×pi , say λ2
i .

It follows that the determinant of g2
pi/λi is 1, so g2

pi/λi ∈ SL2(Z/piZ). By Lemma 7.14 we have
that J(2) contains hi = (1, 1, . . . , 1, g2

pi/λi, 1, . . . , 1). Letting h = h1 · · ·hs, we obtain that the
action of g2h−1 is the same as that of g2. But the element

µ = (1, . . . , 1, λ1, 1, . . . , 1) · · · (1, . . . , 1, λs, 1, . . . , 1)

is central in GL2(Z/NZ), so ĝ2 = g2h−1µ−1 normalises J(2) and it induces the same action as
g2 on J(2)ab.

Let M = lcm{exp PGL2(Fp) : p ∈ T0}, where exp PGL2(Fp) denotes the exponent of the
group PGL2(Fp).

Remark 7.18. Notice that M is even. Moreover, for any g ∈ GL2(Z/NZ) and any p ∈ T0 with
p | N and p 6= ` we have that πp(g

M ) is a scalar in GL2(Fp), since it is trivial in PGL2(Fp).

We now prove Proposition 7.13, using the constant M just introduced.

Proof of Proposition 7.13. Write as before g = (gp). We divide the prime factors of N different
from ` into three sets as follows:

P0 = {p | N such that p ∈ T0, p 6= `} ,
P1 = {p | N such that Hp = GL2(Fp), p 6= `} ,
P2 = {p | N such that Hp is conjugate to a subgroup of Nns(p), p 6= `} .

Notice that by Theorem 3.15 each prime factor of N different from ` belongs to one of these
three sets.

We now apply Corollary 7.17 with {p1, . . . , ps} = P1 to obtain an element ĝ ∈ GL2(Z/NZ)
such that πp(ĝ) = Id for every p ∈ P1 and such that ĝ2 induces on J(2)ab the same conjugation
action as g2. In particular, ĝM induces on J(2)ab the same conjugation as gM (recall that M is
even).

We now prove that this conjugation action is trivial by showing that ĝM commutes with every
element of J(2). It suffices to show that for each p | N the projection πp(ĝ

M ) commutes with
every element of πp(J(2)).

(i) Case p ∈ P0: by Remark 7.18, πp(ĝ
M ) is a scalar, thus it commutes with all of GL2(Fp).

(ii) Case p ∈ P1: by construction πp(ĝ
M ) is trivial.

(iii) Case p ∈ P2: by Corollary 3.16 applied to πp(ĝ), there is h ∈ GL2(Fp) such that πp(ĝ) ∈
hNns(p)h

−1 and Hp ⊆ hNns(p)h
−1. Since M is even and Cns(p) has index 2 in Nns(p),

πp(ĝ
M ) ∈ hCns(p)h

−1 and πp(J(2)) ⊆ 〈 a2 | a ∈ Hp〉 ⊆ hCns(p)h
−1. Since Cns(p) is

abelian, πp(ĝ
M ) commutes with every element of πp(J(2)).

(iv) Case p = `: by construction πp(J(2)) is trivial.
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Chapter 2

Some uniform bounds for elliptic
curves over Q

by Davide Lombardo and Sebastiano Tronto [LT21b]

1 Introduction

Let E/Q be an elliptic curve. Our purpose in this paper is to provide universal bounds on several
arithmetically relevant quantities attached to E, and more precisely to its Galois representations.
For each prime ` we denote by G`∞ the image of the `-adic Galois representation attached to
E/Q, and by G∞ the image of the adelic representation (see Section 2.4 for details). We provide
in particular:

1. a uniform upper bound for the index [Z×` : Z×` ∩ G`∞ ] (Theorem 3.16), that is, we show
that for every prime ` the subgroup of scalars in the `-adic image of Galois contains a fixed
subgroup of Z×` for all elliptic curves E/Q;

2. a uniform upper bound on the exponent of the cohomology groups H1(G∞, E[N ]), for all
positive integers N (Theorem 4.8);

3. a uniform lower bound for the closed Z`-subalgebra Z`[G`∞ ] of Mat2×2(Z`) generated by
G`∞ ⊆ GL2(Z`) ⊂ Mat2×2(Z`): for each prime ` we compute an optimal exponent m` such
that Z`[G`∞ ] contains `m` Mat2×2(Z`) (Theorem 5.8);

4. a uniform lower bound on the degrees of the relative ‘Kummer extensions’ (Section 6), that
is, the extensions Q( 1

N α,E[N ])/Q(E[N ]) obtained by adjoining all N -torsion points of E
and all N -division points of a fixed rational point α ∈ E(Q) (Theorem 6.5), provided that
α and all its translates by torsion points are not divisible by any d > 1 in the group E(Q).

We now elaborate on each of these four topics. It is well-known that, for a fixed prime ` and
number fieldK, the images of the `-adic Galois representations attached to non-CM elliptic curves
over K admit a uniform upper bound for the index [GL2(Z`) : G`∞ ] (see for example [Ara08]).
Since the CM case is easy to handle, this implies the existence of a bound as in (1). However, the

53
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result of [Ara08] is not effective, and a great deal of work has gone into classifying the possible
`-adic images of Galois even just for elliptic curves over Q (the so-called ‘Program B’ of Mazur),
see for example [Maz77, RZB15, Zyw15a, BP11, LFL21, GRSS14, Gre12]. Our results on (1),
which rely heavily on many of these previous developments, give a complete answer for all primes
` 6= 3, and a rather sharp bound also for the remaining case ` = 3. With the exception of the case
` = 2, that was already treated in [RZB15], we prove our estimates by group-theoretic means (see
in particular the criteria given by Corollary 3.7 and Proposition 2.A.1). The advantage of such
an approach is that our methods can easily be extended to number fields other than Q. The price
to pay is that we don’t get the sharpest possible result for ` = 3, a direction we have decided
not to pursue further also due to the very recent work of Rouse, Sutherland and Zureick-Brown
[RSZB21] on the complete classification of 3-adic images of Galois for elliptic curves over Q with
a rational 3-isogeny (see also Remark 3.15).

Concerning (2), there is already a significant past literature on controlling the cohomology
groups H1(G`∞ , E[`k]), see for example [LW15], [Coa70, Lemma 10] and [Cre97, Section 3].
Kolyvagin’s celebrated work on the Birch–Swinnerton-Dyer conjecture also needs to rely on
vanishing statements for the Galois H1 of the `-torsion of elliptic curves [Gro91, Proposition 9.1].
In this paper we go beyond the known results in two different ways. On the one hand, we
extend the statements in [LW15] by giving a uniform upper bound on the exponents of all the
cohomology groups H1(G`∞ , E[`k]), where [LW15] mostly gave vanishing conditions and did
not extensively treat the cases when the cohomology does not vanish. As we show in Section
7, these results for a fixed prime ` are rather sharp. Secondly, and more importantly for our
application (4), we also treat the Galois action on the N -torsion of elliptic curves when N is not
necessarily a prime power. While the case N = `k follows easily from the existence of non-trivial
scalars in the image of Galois, the general case introduces a number of additional complications,
connected with the possible ‘entanglement’ of torsion fields at different primes. Since not even
the classification of possible `-adic images is complete, the problem of describing all possible
entanglements between torsion fields seems to be out of reach for the moment (but see [Mor19],
[CS19, §3], [CP20] and [DLM21] for some positive results), so the computation of H1(G∞, E[N ])
cannot be approached directly. We are still able to obtain useful information on this group (in
particular, prove Theorem 4.8) by using the inflation-restriction exact sequence and controlling
the amount of entanglement by using our results on scalars and the uniform bound on the degrees
of prime-degree isogenies (Mazur’s theorem). As in the case of (1), the intermediate technical
results on the way to the proof of Theorem 4.8 should hopefully apply in more general situations
(see in particular Proposition 4.5). Our numerical estimate on the exponent of H1(G∞, E[N ]) is
nowhere near as sharp as the corresponding bounds for the special case N = `k, but notice that
(unlike in that case) it is not a priori clear that a uniform bound should even exist. We had in
fact already shown the existence of such a bound in [Chapter 1], but the result was not effective.

We remark that we have chosen to formulate our bounds in terms of divisibility: we prove
that multiplication by a suitable universal constant e kills the abelian group H1(G∞, E[N ]), and
therefore the exponent of this group divides e. The numerical constant would be much smaller
if we instead formulated the result as an inequality (that is, if we were content with knowing
that the exponent of H1(G∞, E[N ]) does not exceed a certain constant e′), but we feel that
our version will be more useful in applications. In particular, we would like to stress that –
even ignoring the non-effective parts of the argument – the ideas of [Chapter 1] would lead to a
(divisibility) bound for H1(G∞, E[N ]) involving primes up to several millions, while the value of
e that we find with the new, more streamlined proof given in the present paper is only divisible
by the primes up to 11 (which, as we show in Section 7, all need to appear as factors of e). In
other words, while our constant e is probably not optimal, it is at least supported on the correct
set of primes.
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The algebra Z`[G`∞ ] considered in (3) is also a classical object in the field of Galois repre-
sentations, and its analogues in arbitrary dimension most famously play an important role in
Faltings’s proof of his finiteness theorems for abelian varieties. While in many applications one
needs control over the actual image of Galois G`∞ , in several cases it is enough to get a handle
on the sub-algebra of Mat2×2(Z`) generated by it. In the hope that it will be useful in such
cases, we give explicit values m` with the property that `m` Mat2×2(Z`) is contained in Z`[G`∞ ]
for all elliptic curves E/Q, and we show that these values are optimal.

Finally, (4) was our original motivation for the work done in this paper: we had already
shown a similar result in [Chapter 1], but (lacking all the previous information (1), (2), (3))
we could not make it explicit, or in fact even effective. With all the preliminary work done in
[Chapter 1] and in the other sections of this paper, the desired result on Kummer extensions is
now easy to prove. Notice that the assumption on the (in)divisibility of the point α is necessary:
if α = Nβ for some rational point β then Q( 1

N α,E[N ]) coincides with the torsion field Q(E[N ]),
and clearly no non-trivial lower bound for [Q( 1

N α,E[N ]) : Q(E[N ])] exists in this case. On the
other hand, it is possible to relax this assumption if one is willing to accept a bound that depends
on the largest integer d such that α is d-divisible in E(Q)/E(Q)tors, but not on the curve E, see
[Chapter 1, Remark 7.2].

We make two final comments. In order to get completely uniform results, we also need to
treat the case of CM elliptic curves: while the proofs are generally easier than their non-CM
counterparts, they are genuinely different and require some additional observations. In several
cases we also prove sharper results in this context (see in particular Theorem 4.9 for a bound
on the cohomology groups attached to CM elliptic curves over number fields). For this reason,
while it is clear that one can obtain uniform statements that do not distinguish between CM and
non-CM curves (essentially, by taking the maximum of the bounds in the two cases), we have
chosen to formulate most of our results with a clear distinction between the two situations.

Finally, we would like to point out that much of what we do in this paper can be extended to
number fields K having at least one real place, at least if one is ready to believe the Generalised
Riemann Hypothesis. Indeed, under GRH, the uniform boundedness of isogenies of elliptic
curves over K holds by [LV14, Corollary 6.5]. Concerning the four topics above, we have already
pointed out that (1) is known to be true for all number fields, and the group-theoretic criteria
of Propositions 3.4 and 2.A.1 can in most cases make this explicit (in terms of a bound on the
possible degrees of cyclic isogenies). As for (2), the proof of Theorem 4.8 can be repeated almost
verbatim once one knows that the subgroup of scalars in G`∞ is uniformly lower-bounded for
all ` and that the degrees of cyclic isogenies are also bounded. A bound as in (3) follows from
Proposition 5.1, Proposition 5.3 and Corollary 5.5. Finally, by the results of [Chapter 1] a bound
as in (4) can be obtained as a consequence of all the above. We do not pursue this observation
further since the result would in any case be conditional on GRH, but we hope to have convinced
the reader that the techniques in this paper have wider applicability than just the case of rational
numbers.

1.1 Structure of the paper

In Section 2 we recall some basic properties of `-adic numbers and of subgroups of GL2(F`) for ` a
prime number. We also introduce our notation for the Galois representations attached to elliptic
curves. In Section 3 we prove our first main results, Theorems 3.16 and Proposition 3.18, which
give a uniform lower bound for the subgroup of scalars in the image of Galois representations
attached to elliptic curves over Q (in the non-CM and CM case respectively). In Section 4 we
deduce from this an estimate on the exponent of the first cohomology group for the action of
Galois on the torsion points of an elliptic curve E/Q, see Theorem 4.8 and Theorem 4.9 (which
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covers the CM case for elliptic curves over arbitrary number fields). In Section 5 we describe the
Z`-subalgebra of End(Z2

`) generated by the image of an `-adic Galois representation attached
to an elliptic curve over Q. Finally, in Section 6 we combine the previous results to study the
Kummer theory of elliptic curves over Q, leading to a uniform estimate on the degrees of Kummer
extensions (Theorem 6.5). Section 7 gives some explicit examples showing that at least some
of our estimates are not too far from optimal. The group-theoretic Appendix 2.A contains the
proof of an auxiliary result needed in Section 3 to study the case of 3-adic Galois representations.

1.2 Acknowledgements

We thank Peter Bruin for providing us with a reference for Lemma 5.4, and Andrea Maffei
for a useful discussion on reductive groups. We also thank Jeremy Rouse and Michael Cerchia
for fruitful discussions, for informing us of their work in progress, and for suggesting some
improvements to our results.

2 Preliminaries

2.1 The `-adic numbers

For every prime ` we denote by Z` the ring of `-adic integers, which we regard as a profinite
(topological) ring, and by v` the `-adic valuation on Z`. We denote by Z+

` the underlying abelian
group of Z`, which is topologically generated by any element of `-adic valuation 0, and by Z×` its
group of units. For n > 1 we let 1 + `nZ` = {x ∈ Z` | v`(x− 1) > n}. Since the subgroup `nZ`
of Z+

` is topologically generated by any element of valuation n, from [Coh07, Proposition 4.3.12]
one obtains:

Lemma 2.1. Let n be a positive integer and let ` > 2 be a prime. Let G be a closed subgroup of
Z×` . If there is λ ∈ G such that v`(λ− 1) = n, then G contains 1 + `nZ`.

There is group homomorphism F×` → Z×` , the Teichmüller lift, that sends every λ ∈ F×` to

the unique λ̃ ∈ Z×` such that λ̃` = λ̃ and λ̃ ≡ λ (mod `) (such a λ̃ exists by Hensel’s lemma).
The following well-known lemma (see e.g. [Gou97, Corollary 4.5.10]) shows that Z×` is generated
by 1 + `Z` and by the Teichmüller lifts of all elements of F×` , a fact that will be used in Section
3.

Lemma 2.2. The short exact sequence

1→ 1 + `Z` → Z×` → F×` → 1

is split by the Teichmüller lift.

If m and n are positive integers we extend v` to the additive group of m × n matrices
with coefficients in Z` as follows: if A = (aij)16i6m, 16j6n ∈ Matm×n(Z`) we let v`(A) :=
min {v`(aij) | 1 6 i 6 m, 1 6 j 6 n}. The following is proven by an immediate induction on
v`(n):

Lemma 2.3. Let s be a positive integer and let h ∈ GLs(Z`). If v`(h−Id) > 0, then v`(h
n−Id) >

v`(n) for all positive integers n.
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2.2 Cartan subgroups of GL2(F`)

We recall the definition and basic properties of Cartan subgroups of GL2(F`) when ` is an odd
prime.

Definition 2.4. Let ` > 2 be a prime and let δ ∈ F×` . We call

C`(δ) :=

{(
x δy
y x

)
| x, y ∈ F`, x2 − δy2 6= 0

}
⊆ GL2(F`)

the Cartan subgroup of GL2(F`) with parameter δ. We call C`(δ) split if δ is a square in F`, and
nonsplit otherwise. We also denote by N`(δ) the normalizer of C`(δ) in GL2(F`).

Remark 2.5. Let λ ∈ F×` . Conjugating C`(δ) by

(
λ 0
0 1

)
gives C`(δλ

2), so that a Cartan

subgroup is determined (up to conjugacy in GL2(F`)) by the class of δ ∈ F×` /F
×2
` , that is, only

by whether or not δ is a square in F×` .

Lemma 2.6 ([LP17, Lemma 14]). Let ` > 2 be a prime and let δ ∈ F×` . The Cartan subgroup
C`(δ) has index 2 in N`(δ). More precisely, we have

N`(δ) = C`(δ) ∪
(

1 0
0 −1

)
· C`(δ) .

Remark 2.7. Let ` > 2 be a prime and let δ ∈ F×` . Considering the matrix g =

(
1 1
1 −1

)
,

whose inverse is 1
2g, one sees that C`(1) is conjugate to the subgroup

C∗` (1) := gC`(1)g−1 =

{(
t 0
0 w

)
| t, w ∈ F×`

}
of GL2(F`), whereas for δ 6= 1 it is conjugate to

C∗` (ε) := gC`(δ)g
−1 =

{(
x+ εw −w
w x− εw

)
| x,w ∈ F`, x2 + (1− ε2)w2 6= 0

}
where ε = δ+1

δ−1 . Similarly, N`(δ) is conjugate to

N∗` (ε) = C∗` (ε) ∪
(

0 1
1 0

)
· C∗` (ε) ,

which is the normalizer of C∗` (ε).

2.3 Subgroups of GL2(F`) and GL2(Z`)

Since we will need to rely on it several times throughout the paper, we remind the reader of the
well-known classification of maximal subgroups of GL2(F`), traditionally attributed to Dickson.
For ` = 2 the group GL2(F2) is isomorphic to S3, so its subgroup structure is well-known. Assume
now that ` > 2. Recall that a subgroup G of GL2(F`) is said to be Borel if it is conjugate to the
subgroup of upper-triangular matrices, and is said to be exceptional if its image in PGL2(F`)
is isomorphic to A4, S4 or A5. Also recall the definition of Cartan subgroups from the previous
section.
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Theorem 2.8 (Dickson’s classification, cf. [Ser72, §2]). Let ` > 2 be a prime number and G be
a subgroup of GL2(F`).

• If ` divides the order of G, then G either contains SL2(F`) or is contained in a Borel
subgroup.

• If ` does not divide the order of G, then G is contained in the normaliser of a (split or
nonsplit) Cartan subgroup or in an exceptional group.

To handle the profinite groups that arise as Galois representations attached to elliptic curves
we will find it useful to employ a notion first introduced by Serre [Ser97, IV-25]. We say that a
non-abelian finite simple group Σ occurs in the profinite group Y if there exist a closed subgroup
Y1 of Y and an open normal subgroup Y2 of Y1 such that Σ ∼= Y1/Y2. We notice in particular
that PSL2(F`) occurs in GL2(Z`). We will also need the following fact: for every exact sequence
of profinite groups 1 → N → G → G/N → 1 and every non-abelian finite simple group Σ, if
Σ occurs in G then it occurs in at least one of N and G/N (and conversely), see again [Ser97,
IV-25].

2.4 Galois representations and torsion fields of elliptic curves

Let K be a number field and E/K be a fixed elliptic curve. We will say that E is non-CM if
EndK(E) is Z, or equivalently, if E does not have CM over K. We will denote by Etors the
group of all torsion points in E(K). Consider, for each positive integer N , the natural Galois
representation

ρN : Gal(K | K)→ Aut(E[N ])

afforded by the N -torsion points of E(K). We will often assume that a basis of the free
Z/NZ-module E[N ] has been fixed, and therefore regard the image GN of ρN as a subgroup of
GL2(Z/NZ).

We denote by KN the field fixed by the kernel of ρN , or equivalently the Galois extension of
K generated by the coordinates of all N -torsion points of E. When N = `n is a prime power,
by passing to the limit in n we also obtain the group G`∞ = Gal (K(E[`∞]) | K), which we
consider as a subgroup of GL2(Z`), and the corresponding fixed field K`∞ =

⋃
n>1K`n . Finally,

we also denote by K∞ the field generated by the various K`∞ as ` varies. One can also define
the adelic Tate module TE := lim←−N E[N ], isomorphic to Ẑ2, and the adelic Galois representation

ρ∞ : Gal(K | K) → Aut(TE). The Galois group Gal(K∞ | K) is then isomorphic to the image
G∞ of ρ∞ (hence to the inverse limit lim←−N Im ρN ), and may be considered – up to the choice

of an isomorphism TE ∼= Ẑ2 – as a subgroup of GL2(Ẑ). Finally we remark that, since all the
representations ρN are continuous and Gal(K | K) is a compact Hausdorff topological group, all
the groups just introduced are compact, and therefore closed in their respective ambient spaces.

2.5 Modulo ` Galois representations of elliptic curves over Q
Our focus will be on elliptic curves defined over the field of rational numbers. The Galois
representations attached to such curves have been studied extensively, and a number of powerful
results on their possible images have been proven. We will in particular need to rely on a famous
theorem of Mazur concerning the degrees of cyclic isogenies of elliptic curves defined over Q. To
state it, let

T0 := {p prime | p 6 17} ∪ {37}.
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Theorem 2.9 ([MG78, Theorem 1]). Let p be a prime number and E/Q be an elliptic curve,
and assume that E has a Q-rational subgroup of order p. Then p ∈ T0 ∪ {19, 43, 67, 163}. If E
does not have CM over Q, then p ∈ T0.

3 Scalars in the image of Galois representations

Let E be an elliptic curve over a number field K and let ` be a prime number. Our purpose in
this section is to study the intersection G`∞ ∩Z×` · Id, that is, the subgroup of scalar matrices in
the image of the `-adic Galois representation attached to E/K. We will focus mostly, but not
exclusively, on the case K = Q. The main result is Theorem 3.16, which – for each prime ` –
describes a subgroup of Z×` · Id that is guaranteed to be contained in G`∞ for all non-CM elliptic
curves over Q (see also Proposition 3.18 for the CM case). To simplify the notation, we will often
identify (Z/`nZ)× (resp. Z×` ) with the subgroup (Z/`nZ)× · Id (resp. Z×` · Id) of GL2(Z/`nZ)
(resp. GL2(Z`)).

Since it helps understanding the relevance of the criteria in the next subsection, we briefly
contextualise the group-theoretic properties we are going to consider in terms of the Galois
representations attached to elliptic curves over Q. Let E/Q be an elliptic curve and let G`∞

(respectively G`) be the image of the corresponding `-adic (respectively mod `) Galois represen-
tation. To begin with, one has det(G`∞) = Z×` , because for σ ∈ Gal(Q | Q) the determinant
of ρ`∞(σ) is simply χ`∞(σ), and it is well-known that the `-adic cyclotomic character χ`∞ is
surjective. Moreover, when E is non-CM and ` 6∈ T0, by Theorem 2.9 we know that G` acts
irreducibly on E[`]; in particular, this holds for all ` > 37. We prove in Lemma 3.6 below that if
G` acts irreducibly on E[`] and ` | #G` then G`∞ = GL2(Z`), so the most interesting case (for `
large) is ` - #G`. In this case [Zyw15a, Proposition 1.13] (or equivalently [LFL21, Appendix B])
shows that (up to conjugacy) there are only two possibilities for G`, namely a non-split Cartan
subgroup or the unique index-3 subgroup thereof. These are therefore the most interesting situa-
tions, and are explored in Corollary 3.7. Finally, notice that the image of a complex conjugation
in G`∞ is a matrix of order 2 with determinant −1, so – up to conjugation – when ` > 2 we may

assume that it is

(
0 1
1 0

)
. This explains the relevance of this specific matrix for the statement

of Proposition 3.4.

3.1 Group-theoretic criteria

In this section we establish several criteria that guarantee that a closed subgroup G of GL2(Z`)
contains an (explicit) open subgroup of Z×` . A further result of the same kind, whose proof is
however more involved, is stated and proved in Appendix 2.A. The criteria in this section will
be expressed in terms of G`, the image of G under reduction modulo `. More generally, we will
employ the following notation:

Notation. Let G be a subgroup of GL2(Z`). We denote by G`n the image of G under the
reduction map GL2(Z`)→ GL2(Z/`nZ).

Lemma 3.1. Let ` be a prime and let g ∈ GL2(Z`) be such that g ≡ λ Id (mod `) for some
λ ∈ F×` . Let moreover λ̃ ∈ Z×` be the Teichmüller lift of λ. Then the sequence {g`n}n>1

converges to λ̃ Id ∈ GL2(Z`).

Proof. By Lemma 2.2 we can write g = λ̃h, where h = Id +`h1 ∈ GL2(Z`) is congruent to the
identity modulo `. Then for any n > 1 we have g`

n

= λ̃`
n

h`
n

= λ̃h`
n

. By Lemma 2.3 we have
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that v`((Id +`h1)`
n − Id) > n for every n > 0. This means that the sequence {h`n}n>1 converges

to Id, hence
{
g`
n}

n>1
converges to λ̃ Id.

Corollary 3.2. Let ` be a prime and let G be a closed subgroup of GL2(Z`). Suppose that the
image of G in GL2(F`) contains λ Id for some λ ∈ F×` . Then G contains λ̃ Id.

Proof. Let g ∈ G reduce to λ Id modulo `. By the previous lemma the sequence {g`n} converges
to λ̃ Id, so this is an element of G since by assumption G is closed.

The following result can be found in [Zyw11, Lemma 2.5], but we include the proof here for
ease of reference.

Lemma 3.3. Let n be a positive integer, let ` > 2 be a prime and let G be a closed subgroup of
GL2(Z`). Let

Hn := {g ∈ G | g ≡ Id (mod `n)} .

If det(G) = Z×` and ` - #G`, then det(Hn) = 1 + `nZ`.

Proof. Clearly det(Hn) ⊆ 1+ `nZ`, so we only need to prove the other inclusion. Since det(G) =

Z×` there is g ∈ G such that det(g) = 1 + `. Then by Lemma 2.3 the element h := g`
n−1·#G`

satisfies h ≡ Id (mod `n), so it belongs to Hn. Moreover

det(h) = (1 + `)`
n−1·#G` ≡ 1 + #G``

n (mod `n+1)

and since ` - #G` we have v`(det(h)− 1) = n. By Lemma 2.1 we conclude that det(H) contains
1 + `nZ`.

We now come to our criterion for the existence of scalars in G when ` - #G`.

Proposition 3.4. Let ` > 2 be a prime and G be a closed subgroup of GL2(Z`) such that

detG = Z×` . Assume that G` contains τ =

(
0 1
1 0

)
and that ` - #G`.

1. Suppose that G` contains an element u for which one of the following holds:

(a) u anti-commutes with τ , that is, uτ = −τu;

(b) there exists ε ∈ F×` \ {1} such that for all antidiagonal matrices A =

(
0 x
y 0

)
we have

uAu−1 =

(
0 εx

ε−1y 0

)
.

Then G contains 1 + `Z`.

2. Suppose that one of the assumptions of (1) holds, and that moreover G` contains F×` . Then
G contains Z×` .

Remark 3.5. It is immediate to check that the following elements of GL2(F`) have the property
required to apply part (1):

(1a) u =

(
a b
−b −a

)
, where a, b ∈ F` are such that det(u) = b2 − a2 6= 0.

(1b) u =

(
a 0
0 b

)
with a, b ∈ F×` , a 6= b.
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Proof. By Lemma 2.1 the element 1 + ` generates 1 + `Z`, so it suffices to prove that (1 + `) Id
is in G. For this it suffices to show that (1 + `) Id is in G`n for every n > 1. We prove this
by induction. For n = 1 the statement holds trivially, so assume that (1 + `) Id belongs to
G`n and let C = (1 + `) Id +`nB be a lift of this element to G`n+1 , which exists because the
map G`n+1 → G`n is surjective. Notice that we may consider B as an element of Mat2×2(F`).
In addition, if n = 1, thanks to Lemma 3.3 we may assume that det(C) 6≡ 1 (mod `2), and
consequently that tr(B) 6≡ −2 (mod `). If τ̃ is any lift of τ to G`n+1 , the element

C ′ := Cτ̃Cτ̃−1 = ((1 + `) Id +`nB)
(
(1 + `) Id +`nτ̃Bτ̃−1

)
= (1 + `)2 Id +(1 + `)`n(B + τ̃Bτ̃−1) + `2nBτ̃Bτ̃−1

≡ (1 + `)2 Id +`n(B + τ̃Bτ̃−1) (mod `n+1)

is in G`n+1 . Notice that D := B + τBτ−1 is congruent to

(
a b
b a

)
modulo `, where a = tr(B)

and b ∈ F`.

• Suppose that G` contains an element u as in part (1a). Then

uDu−1 ≡
(

a −b
−b a

)
(mod `) .

If ũ ∈ G`n+1 is a lift of u, the group G`n+1 contains

C ′ũC ′ũ−1 ≡
(
(1 + `)2 Id +`nD

) (
(1 + `)2 Id +`nũDũ−1

)
≡
(

(1 + `)2 Id +`n
(
a b
b a

))(
(1 + `)2 Id +`n

(
a −b
−b a

))
≡ (1 + `)4 Id +2a`n Id (mod `n+1)

which is a scalar matrix congruent to 1 + 4` modulo `2 if n > 1 or to 1 + 2`(2 + a) if n = 1.

• Suppose that G` contains an element u as in part (1b). Then we have

Dk := ukDu−k =

(
a bεk

bε−k a

)
.

Letting ũ be a lift of u to G`n+1 we obtain that for every non-negative integer k the group
G`n+1 contains

ũkC ′ũ−k = (1 + `)2 Id +`nDk.

Thus, using the fact that
∑`−2
k=0 ε

k = ε`−1−1
ε−1 = 0, we see that G`n+1 also contains

`−2∏
k=0

ũkC ′ũ−k ≡
`−2∏
k=0

(
(1 + `)2 Id +`nDk

)
(mod `n+1)

≡ (1 + `)2(`−1) Id +`n(1 + `)2(`−2)
`−2∑
k=0

Dk (mod `n+1)

≡ (1 + `)2(`−1) Id−`n
(
a 0
0 a

)
(mod `n+1),

which is a scalar matrix congruent to 1− 2` modulo `2 if n > 1 or to 1− (2 + a)` if n = 1.
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In any case, using our assumption that a = tr(B) 6≡ −2 (mod `) if n = 1, we see that G`n+1

contains a scalar matrix λ Id with v`(λ− 1) = 1. We can now apply Lemma 2.1 to the subgroup
of Z×` given by the inverse image of G`n+1 ∩ (Z/`n+1Z)× under the natural projection, and we
conclude that (1 + `) Id ∈ G`n+1 as desired.

Finally, if F×` is contained in G`, Lemma 3.1 shows that G contains a Teichmüller lift of every
element of F×` . By Lemma 2.2 this is enough to conclude that G contains Z×` .

Lemma 3.6. Let ` > 5 be a prime number and G be a closed subgroup of GL2(Z`). Suppose
that det(G) = Z×` . If ` | #G` and G` acts irreducibly on F2

` , then G = GL2(Z`).

Proof. Since ` | #G`, the classification of maximal subgroups of GL2(F`) (Theorem 2.8) shows
that either G` is contained in a Borel subgroup of GL2(F`), or G` contains SL2(F`). However, any
subgroup of a Borel acts reducibly on F2

` by definition, hence we see that G` contains SL2(F`).
By a lemma due to Serre (see [Ser97, IV-23, Lemme 3] and [Lom15, Lemma 3.15] for this exact
version), this implies that G contains SL2(Z`). From det(G) = Z×` we then obtain G = GL2(Z`)
as desired.

Corollary 3.7. Let ` > 2 be a prime and let G be a closed subgroup of GL2(Z`) with det(G) =
Z×` . Suppose that (at least) one of the following holds:

1. G` ⊆ GL2(F`) contains (up to conjugacy) the normaliser of a split or non-split Cartan,
and if ` | #G` then ` 6= 3.

2. ` ≡ 2 (mod 3), and G` ⊂ GL2(F`) contains (up to conjugacy) the subgroup of cubes in the
normaliser of a non-split Cartan.

Then G contains Z×` .

Proof. Suppose first that ` | #G` (hence in particular ` > 3). The normaliser of a (split or non-
split) Cartan, or an index-3 subgroup of a non-split Cartan, acts irreducibly on F2

` , so Lemma 3.6
implies G = GL2(Z`), which in particular contains Z×` .

Suppose on the other hand that ` - #G`. Notice that – since the scalar matrices are contained
in the centre of GL2(Z`) – the conclusion of Proposition 3.4 is invariant under a change of basis
for Z2

` , so it suffices to check that the group G satisfies the hypotheses of Proposition 3.4 after a
suitable change of basis.

1. By what we already remarked, and up to conjugation in GL2(Z`), we may assume that G`
contains the group N∗` (ε) described in Remark 2.7, or an index-3 subgroup thereof. The

explicit description shows that every group of the form N∗` (ε) contains

(
0 1
1 0

)
; since

this matrix is equal to its cube,

(
0 1
1 0

)
is also contained in the subgroup of cubes in

N∗` (ε).

The normaliser of a split Cartan subgroup contains all anti-diagonal matrices, hence in

particular it contains u =

(
0 −1
1 0

)
. The normaliser of a non-split Cartan contains u =(

ε −1
1 −ε

)
. Finally, the subgroup of cubes of such a normaliser contains

(
ε −1
1 −ε

)3

=

(ε2 − 1)

(
ε −1
1 −ε

)
. In all cases we have thus shown that G` contains an element of the

form required to apply Proposition 3.4 (1), see Remark 3.5.
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2. As for hypothesis (2) of Proposition 3.4, observe that all scalar matrices are contained
in the normaliser of every (split or non-split) Cartan subgroup of GL2(F`). When ` ≡ 2
(mod 3) they are also contained in the subgroup of cubes of a non-split Cartan: indeed, in
this case x 7→ x3 is an automorphism of F×` , so every scalar matrix is a cube.

3.2 Scalars in the presence of an isogeny

We now specialise to the case of G = G`∞ ⊆ GL2(Z`) being the image of the `-adic representation
attached to an elliptic curve E/Q. Our aim is again to prove that G contains an (explicitly
identifiable) subgroup of Z×` . We begin by considering the case when ` > 7 and E admits an
isogeny of degree ` defined over Q. The relevant results are essentially already in the literature,
and in this short section we reformulate them in the form needed for our applications.

Definition 3.8 ([GRSS14, Definition 1.1]). Let ` be a prime. An elliptic curve E over Q is
called `-exceptional if E has an isogeny of degree ` defined over Q and G`∞ does not contain
a Sylow pro-` subgroup of GL2(Z`).

Combining [Gre12, Theorem 1] with [Gre12, Remark 4.2.1] and [GRSS14, Theorem 5.5] one
obtains:

Theorem 3.9. Let ` > 7 be a prime. There are no non-CM `-exceptional elliptic curves defined
over Q.

For the case ` = 5 we instead rely on the following result:

Theorem 3.10 ([Gre12, Theorem 2]). Let E/Q be a non-CM elliptic curve. Suppose that E
has an isogeny of degree 5 defined over Q. If none of the elliptic curves in the Q-isogeny class of
E has two independent isogenies of degree 5, then E is not 5-exceptional. Otherwise, the index
[GL2(Z5) : G5∞ ] is divisible by 5, but not by 25.

Corollary 3.11. Let E/Q be a non-CM elliptic curve, let ` > 5 be a prime number, and suppose
that the Galois module E[`] is reducible. Then G`∞ contains 1 + `Z`.

Proof. A specific Sylow pro-` subgroup S of GL2(Z`) is given by

S =

{(
a b
c d

)
∈ GL2(Z`)

∣∣ a ≡ d ≡ 1 (mod `), c ≡ 0 (mod `)

}
.

It is clear that 1 + `Z` is contained in S. However, since all the pro-` Sylow subgroups of
GL2(Z`) are conjugate to each other and 1 + `Z` lies in the center of GL2(Z`) (hence is stable
under conjugation), it follows that 1 + `Z` is contained in all the Sylow pro-` subgroups of
GL2(Z`). For ` > 7 the statement then becomes a direct consequence of Theorem 3.9. For
` = 5 the claim similarly follows from Theorem 3.10 if no elliptic curve in the Q-isogeny class
of E admits two independent 5-isogenies. To treat this last case, observe that the intersection
G`∞ ∩Z×` is the same for all the elliptic curves in a given Q-isogeny class (see e.g. [Gre12, §2.4]),
so we may assume that E admits two independent 5-isogenies defined over Q. In particular, the
Galois module E[5] decomposes as the direct sum of two 1-dimensional modules, which implies
that in a suitable basis G5 consists of diagonal matrices. Hence [GL2(F5) : G5] is divisible by
5, and on the other hand 25 - [GL2(Z5) : G5∞ ] by Theorem 3.10 again. It follows immediately
that ker(GL2(Z5) → GL2(F5)), which is a pro-5 group, is entirely contained in G5∞ , hence in
particular that 1 + 5Z5 ⊆ G5∞ , as desired.
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3.3 The 3-adic case

Let E/Q be a non-CM elliptic curve. Relying on the group-theoretic results of Appendix 2.A
we now prove that the 3-adic Galois representation attached to E contains all scalars congruent
to 1 modulo 27. We treat separately the two cases when the Galois module E[3] is respectively
irreducible or reducible.

Irreducible case

When E[3] is irreducible for the Galois action, it is not hard to prove that G3∞ contains all
scalars:

Proposition 3.12. Suppose E[3] is an irreducible Galois module. Then G3∞ contains Z×3 .

Proof. Up to conjugation, we can assume that G3 contains

(
1 0
0 −1

)
(the image of complex con-

jugation). A short direct computation shows that (up to conjugacy) there are only 3 possibilities

for G3, namely GL2(F3), a 2-Sylow subgroup, or the group H :=

〈(
0 1
1 0

)
,

(
0 −1
1 0

)〉
of order

8. In particular, in all cases we may assume that H ⊆ G3. The hypotheses of Proposition 3.4
(2) are then satisfied, hence G3∞ contains Z×3 .

Reducible case

We now consider the much harder case when E[3] is reducible under the Galois action. Our
analysis is based on the purely group-theoretic Proposition 2.A.1. To motivate the hypotheses
that appear in its statement, we consider a non-CM elliptic curve E/Q for which the Galois
module E[3] is reducible, and denote as usual by G3n the image of the modulo-3n representation
attached to E/Q and by G3∞ the image of the 3-adic representation. The following hold:

1. Any elliptic curve Ẽ/Q that is Q-isogenous to E gives rise to a 3-adic Galois image G̃3∞ for
which G3∞ ∩Z×3 = G̃3∞ ∩Z×3 (notice that this equality is independent of the choice of basis
for T3E, T3Ẽ), see for example [Gre12, §2.4]. For all such curves Ẽ/Q, the Galois module
Ẽ[3] is clearly reducible, and at least one Ẽ of this form does not admit two independent
cyclic isogenies of degree 3 defined over Q. Hence, up to replacing E with Ẽ, we may
assume that G3 is contained (up to conjugacy) in a Borel subgroup and that G3 only fixes
one nontrivial F3-subspace of E[3]. This implies 3 | #G3.

2. G27 acts on E[27] without fixing any cyclic subgroup of order 27. Indeed, the three rational
points on X0(27) are two cusps and a single non-cuspidal point corresponding to a CM
elliptic curve [Ogg73, p. 229].

3. det(G3∞) = Z×3 : as already discussed, this follows from the surjectivity of the 3-adic
cyclotomic character.

4. G3∞ contains the image of (any) complex conjugation, which is an element c of order 2
with determinant −1.

We now check that this information is sufficient to apply Proposition 2.A.1. Up to a change of

basis, we may assume that the element c ∈ G3∞ is represented by the matrix C =

(
1 0
0 −1

)
.

This easily implies that G3 is contained in the Borel of upper- or lower-triangular matrices (see
also Remark 2.A.4). Take now H to be the pro-3 Sylow subgroup of G3∞ (which is normal,
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hence unique: it is the inverse image in G3∞ of the 3-Sylow of G3, which is easily checked to be
normal). We claim that this group satisfies all the assumptions of Proposition 2.A.1 with p = 3
and k = 3. Hypothesis (1) is satisfied by (1) above. Hypothesis (3) is clear from the equality
det(G3∞) = Z×3 , and (4) follows from the fact that C ∈ G3∞ and H is normal in G3∞ . As for
(2), recall that G3 is contained in the upper- or lower-triangular Borel subgroup, and this implies
easily that G3∞ is generated by H, C, and possibly − Id. Since both C and − Id are diagonal,
we see that if H33 is upper- or lower- triangular, then so is G33 , contradiction, because we know
that E does not admit any cyclic 27-isogeny defined over Q. Hence from Proposition 2.A.1 we
obtain:

Proposition 3.13. Let E/Q be a non-CM elliptic curve for which E[3] is a reducible Galois
module. Then G3∞ contains all scalars congruent to 1 modulo 27.

Combining this result with Proposition 3.12 we have then proved:

Corollary 3.14. Let E/Q be a non-CM elliptic curve. The group G3∞ contains all scalars
congruent to 1 modulo 27.

Remark 3.15. The results of [RSZB21], which appeared almost simultaneously to the present
work, imply that for every non-CM elliptic curve over Q with a rational 3-isogeny the group
G3∞ contains all scalars congruent to 1 modulo 9 (hence, by Proposition 3.12, the same holds for
every non-CM E/Q). The proof in [RSZB21] relies on the explicit determination of the rational
points of suitable modular curves. As pointed out in the introduction, we think our approach –
which derives the result from properties of isogenies (hence relying only on the more well-studied
modular curves X0(N)) – has the advantage of being easier to extend to number fields different
from Q.

3.4 Main theorem

We are now ready to prove our uniform result for scalars in the image of Galois representations:

Theorem 3.16. Let E be a non-CM elliptic curve over Q and let ` be a prime number. Define

s` :=


4, if ` = 2

3, if ` = 3

1, if ` = 5, 7, 11, 13, 17, 37

0, if ` > 19 and ` 6= 37

The image G`∞ of the `-adic Galois representation attached to E/Q contains all scalars congruent
to 1 modulo `s` .

Proof. For ` = 2 and ` = 3 the theorem follows from the results of [RZB15] and Corollary 3.14
respectively. We may therefore assume ` > 5. We distinguish several cases:

1. the G`-module E[`] is reducible. The claim follows from Corollary 3.11.

2. the G`-module E[`] is irreducible and ` | #G`. By Lemma 3.6 we obtain G`∞ = GL2(Z`),
and the claim follows.

3. the G`-module E[`] is irreducible and ` - #G`. Suppose first that ` > 17: then the claim
follows from [Zyw15a, Proposition 1.13] (the exceptional j-invariants correspond to elliptic
curves for which G` does not act irreducibly on E[`], see [Zyw15a, Theorem 1.10]). For
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` = 5, 7, 11, Theorems 1.4, 1.5 and 1.6 in [Zyw15a] completely describe the possible mod-
` images G`. Since G` acts irreducibly on E[`] by assumption, we need to consider the
following cases:

(a) for ` = 5, up to conjugacy the group G` contains either the index-3 subgroup of a
non-split Cartan or the full normaliser of a split Cartan. In both cases we may apply
Corollary 3.7. Similarly, for ` = 11, up to conjugacy the only possibility is that G` is
the full normaliser of a non-split Cartan, and again we conclude by Corollary 3.7.

(b) for ` = 7, up to conjugacy we have that G` is the normaliser of a (split or non-split)

Cartan subgroup, or that it contains 〈
(

2 0
0 4

)
,

(
0 2
1 0

)
〉. The first case is handled as

above. In the other case, one checks thatG` contains

(
0 1
1 0

)
, and clearly it contains(

2 0
0 4

)
, so the hypothesis of Proposition 3.4 (1b) is satisfied (see Remark 3.5) and

the claim follows.

This only leaves the prime ` = 13. By [Zyw15a, §1.6], the maximal proper subgroups
of GL2(F13) not contained in a Borel are (up to conjugacy) the normalisers of (split and
non-split) Cartan subgroups and the group

GS4 =

〈(
2 0
0 2

)
,

(
2 0
0 3

)
,

(
0 −1
1 0

)
,

(
1 1
−1 1

)〉
.

The main result of [BDM+19] (precisely, Theorem 1.1 and Corollary 1.3 in op. cit.) shows
that G13 is not conjugate to a subgroup of a (split or non-split) Cartan. It remains to
understand the case G13 ⊆ GS4 . Consider the collection C of subgroups H ⊆ GS4 that
satisfy all of the following conditions:

(a) detH = F×13;

(b) H contains an element h with h2 = Id and tr(h) = 0;

(c) the projective image H/(H ∩ F×13) has exponent at least 3;

(d) H acts irreducibly on E[13].

If E is a non-CM elliptic curve over Q such that G13 is contained (up to a choice of basis
for E[13]) in GS4

and not contained in a Borel subgroup, then G13 is a member of C: (a)
follows from the surjectivity of the mod-13 cyclotomic character over Q, (b) holds because
the image of complex conjugation has these properties, (c) holds by [Dav11, Lemma 2.4],
and (d) is true by definition. One checks easily that all the groups H in class C contain

both

(
0 1
1 0

)
and

(
0 1
−1 0

)
, hence once again Proposition 3.4 (1) applies to show that

1 + 13Z13 ⊆ G13∞ , as desired.

Remark 3.17. Theorem 1.1 in the very recent preprint [BDM+21], combined with [BC14],
gives the finite list of j-invariants of non-CM elliptic curves E/Q for which G13 is contained
(up to conjugation) in GS4

. For each of these elliptic curves, the image of G13 in PGL2(F13) is
isomorphic to S4: while this is not necessary for our proof, it can be used to simplify the case
` = 13 of the previous argument.
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We also have a similar result in the CM case:

Proposition 3.18. Let E/Q be an elliptic curve with CM and let ` be a prime number. Define

n′` =


3, if ` = 2

1, if ` = 3, 7, 11, 19, 43, 67, 163

0, if ` 6= 2, 3, 7, 11, 19, 43, 67, 163

The image G`∞ of the `-adic Galois representation attached to E/Q contains all scalars congruent
to 1 modulo `n

′
` . Moreover, for ` > 5 the image G`∞ contains a scalar not congruent to ±1

(mod `).

Proof. Let K be the imaginary quadratic field of complex multiplication of E, let ∆K be its
discriminant, and let OK,f be the endomorphism ring of EQ, seen as a subring of OK (here f
denotes the conductor of the order OK,f in OK). It is well-known that there are 13 possible pairs
(K, f), given by K = Q(i) and f = 1, 2, K = Q(ζ3) and f = 1, 2, 3, K = Q(

√
−7) and f = 1, 2,

and K = Q(
√
−d) for d = 2, 11, 19, 43, 67, 163 with f = 1 (see for example [Sil94, Appendix

A, §3]). If ` - 2f∆K , then by [LR18, Theorem 1.2 (4) and Theorem 1.4] the `-adic image G`∞

contains all scalars. If ` | f∆K and ` > 2, then G`∞ contains Z×2
` by [LR18, Theorem 1.5]:

notice that by the above this is only possible for ` = 3, 7, 11, 19, 43, 67, 163, and that for ` > 7 the
group Z×2

` contains scalars not congruent to ±1 (mod `). Finally, for ` = 2 we have by [LR18,
Theorems 1.6, 1.7, 1.8] that G2∞ contains all scalars congruent to 1 modulo 8.

Remark 3.19. A slightly worse result can be obtained more easily (without the need to distin-
guish cases) by applying [Lom17, Theorem 1.5].

3.5 Complements to Theorem 3.16

For future use, we record here the following modest strengthening of Theorem 3.16:

Proposition 3.20. Let E/Q be a non-CM elliptic curve. Let ` ∈ {13, 17, 37}. The image of the
`-adic Galois representation attached to E/Q contains a scalar λ with v`(λ

2 − 1) = 0.

Proof. By Corollary 3.2 it suffices to show that G` contains a scalar different from ±1. For
` = 17, 37, this follows directly from the results of [Zyw15a] (specifically, Theorem 1.10 and
Proposition 1.13). For ` = 13, by Theorem 2.8 and the fact that G13 has surjective determinant
we know that G13 satisfies one of the following:

1. G13 = GL2(F13): in this case the conclusion is obvious.

2. G13 is contained up to conjugacy in a Borel subgroup: by [Zyw15a, Theorem 1.8], the
possible groups that arise in this way all contain a scalar different from ±1.

3. G13 is contained up to conjugacy in the normaliser of a (split or nonsplit) Cartan subgroup:
this is impossible by the main result of [BDM+19].

4. the projective image of G13 is isomorphic to a subgroup of S4 or A5: the claim follows from
Lemma 3.21 below.

Lemma 3.21. Let G be a subgroup of GL2(F13) having projective image isomorphic to a subgroup
of S4 or A5. Suppose that det(G) = F×13: then G contains a scalar different from ± Id.
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Proof. The hypothesis implies that the cyclic group F×13 is a quotient of G, so G contains an
element of order 12. If the claim were false, the projection map G → PGL2(F13) would have
kernel of order at most 2. The maximal order of an element in S4 is 4, and in A5 is 5. It would
follow that the maximal order of an element in G is at most 10, contradiction.

4 Galois cohomology of torsion points

In this section we show that there exists a universal constant e > 0 such that, for all elliptic curves
E/Q and all positive integers M,N with N |M , the cohomology group H1(Gal(QM | Q), E[N ])
is killed by multiplication by e (which we denote by [e]). We also provide an explicit admissible
value for e.

We begin by showing that it suffices to consider the cohomology groups H1(G∞, E[N ]).

Lemma 4.1. Let E/K be an elliptic curve over a number field K and let M,N be positive
integers with N |M . Suppose that H1(G∞, E[N ]) is killed by [e]: then H1(Gal(KM | K), E[N ])
is also killed by [e].

Proof. Denote by H the kernel of the natural map G∞ → Gal(KM | K). As H acts trivially
on E[N ] by the assumption N |M , the inflation-restriction exact sequence gives an injection of
H1(G∞/H,E[N ]) = H1(Gal(KM | K), E[N ]) into H1(G∞, E[N ]), and the claim follows.

On the other hand, if H1(Gal(KM | K), E[N ]) is killed by [e] for all M divisible by N , passing
to the limit in M we also obtain that [e] kills H1(G∞, E[N ]). The statement we aim for is thus
equivalent to saying that, for every E/Q and positive integer N , the group H1(G∞, E[N ]) has
finite exponent dividing e. Our main tool for bounding the exponent of cohomology groups is
the following lemma (see for example [BR03, Lemma A.2] for a proof).

Lemma 4.2 (Sah’s Lemma). Let G be a profinite group, let M be a continuous G-module and
let g be in the centre of G. Then the endomorphism x 7→ gx− x of M induces the zero map on
H1(G,M). In particular, if x 7→ gx− x is an isomorphism, then H1(G,M) = 0.

Remark 4.3. In our applications of Lemma 4.2 we will have G ⊆ GL2(R) for a certain ring R

– either Z` for some prime ` or Ẑ – and M will be a submodule of (Q`/Z`)2
or (Q/Z)

2
. Notice

that these objects carry a natural action of GL2(Z`) and GL2(Ẑ) respectively. We will take g to
be a scalar multiple of the identity, that is, g = λ Id for some λ ∈ R×. The conclusion is then
that the R-module H1(G,M) is killed by λ− 1; when R = Z`, this is equivalent to saying that
H1(G,M) is killed by `v`(λ−1).

Generalising the results of [LW15] we now give a uniform result on the cohomology of torsion
points of elliptic curves over Q for all powers of primes.

Theorem 4.4. Let ` be a prime number and let E/Q be a non-CM elliptic curve. For every
m > 1, the exponent of H1(G`∞ , E[`m]) divides `n` , where

n` :=


3 for ` = 2, 3,

1 for ` = 5, 7, 11,

0 for ` > 13 .

(4.1)

Proof. For ` > 2 we apply Lemma 4.2 (in the form of Remark 4.3) with g = λ Id, where
λ ∈ Z×` ∩ G`∞ is such that v`(λ − 1) = n`. Note that such a λ exists by Theorem 3.16 and
Proposition 3.20.
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For ` = 2 the proof is based on the classification of all possible 2-adic images provided by
[RZB15], and is in part computational. As G2∞ is the inverse limit of the groups G2n , it suffices
to show that for all integers n > m > 1 the exponent of H1(G2n , E[2m]) divides 8. If G2∞

contains a scalar λ with v2(λ− 1) 6 3 the result follows immediately from Lemma 4.2 as above,
so let us assume that this is not the case. This leaves us with only 8 groups left, namely those
with Rouse–Zureick-Brown labels X238a, X238b, X238c, X238d, X239a, X239b, X239c, X239d.
All of these groups are the inverse images of their reduction modulo 25 and contain 17 Id. Let
now ξ : G2n → E[2m] be a 1-cocycle and let λ ∈ G2n be the scalar 17 Id. Notice that there is
nothing to prove if m 6 3, so we may assume n > m > 4. Reasoning as in the proof of Sah’s
lemma, we observe that

ξ(λg) = ξ(gλ)⇒ (λ− 1)ξ(g) = g · ξ(λ)− ξ(λ).

This formula shows both that 16ξ is a coboundary, and that ξ(λ) is such that g · ξ(λ) − ξ(λ)
is divisible by 16 in E[2m]. Imposing this condition for g varying in a set of generators of G2∞

(recall that we only have finitely many groups to test) we obtain that ξ(λ) is divisible by 8. Let
us write ξ(λ) = 8a for some (non-unique) a ∈ E[2m]. As a consequence, we have that for every
g ∈ G2n

8 · 2ξ(g) = g · ξ(λ)− ξ(λ) = 8(g · a− a).

Letting ψ be the coboundary g 7→ g · a − a we then obtain that 2ξ is cohomologous to the
cocycle 2ξ − ψ, which by the above takes values in E[8]. A direct verification, for which we give
details below, shows that H1(G2n , E[8]) has exponent dividing 4 for all n > 3. This implies in
particular that 4 · (2ξ) : G2n → E[8] is a coboundary, hence a fortiori 8ξ : G2n → E[2m] is also a
coboundary, and therefore [8] kills H1(G2n , E[2m]) as desired.

To check that H1(G2n , E[8]) has exponent dividing 4 we proceed as follows. Notice first that
by Lemma 4.1 it suffices to show that [4] is zero on H1(G2∞ , E[8]). On the other hand, consider
an element g ∈ G2∞ that is the 8-th power of an element h congruent to the identity modulo 8,
and let ξ : G2∞ → E[8] be any cocycle. As h acts trivially on E[8], the restriction of ξ to the
subgroup generated by h is a homomorphism, hence ξ(g) = ξ(h8) = 8ξ(h) = 0. This proves that
ξ factors via the finite quotient

G2∞/〈g8 : g ≡ Id (mod 8)〉.

For all the cases of interest we know from [RZB15] that G2∞ contains all matrices congruent to
1 modulo 25, hence 〈g8 : g ≡ Id (mod 8)〉 contains all matrices congruent to Id modulo 28. We
are thus reduced to considering the group Q := G28/〈g8 : g ≡ Id (mod 8)〉 and checking that
the exponent of H1(Q,E[8]) divides 4, which we do by explicit computations in MAGMA.

In order to bound the exponent of H1(G∞, E[N ]) we will apply the following technical result,
which is worth stating in a general form.

Proposition 4.5. Let G∞ be a closed subgroup of GL2(Ẑ) and for every prime ` denote by G`∞

the projection of G∞ in GL2(Z`). Let J` be the kernel of the projection G∞ → GL2(Z`) and J`
be the image of J` in

∏
p prime GL2(Fp). Finally let T be any G∞-submodule of (Q/Z)2. Assume

that for every prime ` there are a positive integer a` and non-negative integers n`,m` such that
the following hold:

1. For all but finitely many primes ` we have v`(a`) = n` = m` = 0.

2. For every prime ` the exponent of H1(G`∞ , T [`∞]) divides `n` .

3. For every prime ` there is a scalar g` ∈ G`∞ such that v`(g` − 1) 6 m`.
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4. For every prime ` and every x ∈ J` the image of [g̃`, x
a` ] in J` is contained in [J`, J`] for

some lift g̃` ∈ G∞ of g`, where g` is as above.

The cohomology group H1(G∞, T ) has finite exponent dividing
∏
` `
n`+m`+v`(a`).

Proof. We will write elements x of G∞ as sequences (xp)p indexed by the prime numbers p,
where each xp is in GL2(Zp). Denoting the `-part of T by T [`∞] we have

T =
⊕
`

T [`∞]

and since cohomology of profinite groups commutes with direct limits (see [Har20, Proposi-
tion 4.18]), hence with direct sums, we get

H1(G∞, T ) ∼=
⊕
`

H1(G∞, T [`∞]).

Fix now a prime `. The inflation-restriction exact sequence for J` / G∞ gives

0→ H1
(
G`∞ , T [`∞]J`

)
→ H1 (G∞, T [`∞])→ H1(J`, T [`∞])G`∞ . (4.2)

Since J` acts trivially on T [`∞] we have

T [`∞]J` = T [`∞] and H1(J`, T [`∞]) = Hom(J`, T [`∞]),

and the action of G`∞ on the latter group is given, for every g ∈ G`∞ , every ϕ ∈ Hom(J`, T [`∞])
and every x ∈ J`, by

(gϕ)(x) = gϕ(g̃−1xg̃)

where g̃ ∈ G∞ is any element mapping to g in G`∞ (see for example [Ros95, Theorem 4.1.20]).
By assumption, the cohomology group H1(G`∞ , T [`∞]J`) is killed by `n` .

Since every element of T [`∞] has order a power of ` and the kernel of the quotient map
J` → J` is contained in the product of pro-p groups for p 6= `, every group homomorphism from
J` to T [`∞] factors via J`. Moreover, since T [`∞] is abelian, we have

Hom(J`, T [`∞]) = Hom(J
ab

` , T [`∞]) .

Assume now that ϕ ∈ Hom(J`, T [`∞]) is G`∞ -invariant. For every x ∈ J` and any lift g̃` ∈ G∞
of g` such that [g̃`, x

a` ] ∈ [J`, J`] (hence in particular ϕ([g̃`, x
a` ]) = 0) we have

a`ϕ(x) = ϕ(xa`) = (g`ϕ)(xa`) = g`ϕ(g̃−1
` xa` g̃`) = a`g`ϕ(x),

so we get a`(g` − 1)ϕ(x) = 0. Since v`(g` − 1) 6 m` we have that Hom(J`, T [`∞])G`∞ is killed
by `m`+v`(a`). From these estimates and the exact sequence (4.2) we conclude that the exponent
of H1(G∞, T ) divides ∏

`

`n`+m`+v`(a`) ,

as required.
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Remark 4.6. If, in the previous proposition, one does not assume that g` be a scalar, the
conclusion still holds by letting m` be a non-negative integer such that v`(det(g` − Id)) 6 m`.
This may be established by a slight variation of the argument above: we only need to notice that
a`(g`− Id)ϕ(x) = 0 implies a` det(g`− Id)ϕ(x) = 0 (this can be seen for example by multiplying
by the adjoint of g` − Id). The more specialised statement given above will allow us to obtain
better numerical constants at the end.

Lemma 4.7. Let G be a subgroup of GL2(Ẑ), let G be the image of G under the quotient map

GL2(Ẑ)→
∏
` prime GL2(F`), and let p > 5 be a prime. If PSL2(Fp) occurs in G (see §2.3), then

G contains SL2(Fp)×
∏
6̀=p {1}.

Proof. Consider the kernel N of the quotient map G →
∏
` GL2(F`). Every composition factor

of N is abelian, and a composition factor of G that does not occur in N must occur in G.
In particular, since PSL2(Fp) is simple and non-abelian, it must occur in G. Consider now
the projection G →

∏
` 6=p GL2(F`) and let N ′ be its kernel: since PSL2(Fp) does not occur in

GL2(F`) for ` 6= p, it must occur in N ′. Then by [Ser97, IV-25] we must have that G contains
SL2(Fp)×

∏
` 6=p {1}.

We now come to our main result on the Galois cohomology of elliptic curves over Q.

Theorem 4.8. Let E be a non-CM elliptic curve over Q and let N be a positive integer. The
cohomology group

H1(Gal(Q(Etors) | Q), E[N ])

has finite exponent dividing

e := 212 × 38 × 53 × 73 × 112 .

Proof. After fixing an isomorphism Etors
∼= (Q/Z)2, let G∞ ⊆ GL2(Ẑ) be the image of the adelic

Galois representation associated with E/Q and let G`∞ , J` and J` be as in the statement of
Proposition 4.5. For every prime ` we let n` be as in Equation (4.1) and λ` ∈ G`∞ be a scalar
such that v`(λ` − 1) = n` + v`(2) and, for ` > 13, such that λ2

` 6≡ 1 (mod `). The elements λ`
exists by Theorem 3.16 and Proposition 3.20. Let g ∈ G∞ be an element whose `-component is
λ` and set g̃` := g2. Finally, let

a` = lcm {exp PGL2(Fp) | p ∈ T0, p 6= `}

and m` = n` + v`(4). We now check that these choices satisfy all the assumptions of Proposi-
tion 4.5, with T = E[N ]. Clearly v`(a`) = n` = m` = 0 for all but finitely many primes `, and
one checks that v`(λ`

2 − 1) = m` for all primes `. Theorem 4.4 shows that H1(G`∞ , T [`∞]) is
killed by `n` . It only remains to check property (4), that is, we wish to prove that for every
x = (xp)p ∈ J` the image h of h = [g̃`, x

a` ] in J` is contained in [J`, J`]. To see this, notice first
of all that the `-component of h in J` is trivial, since x` = 1. The p-component of h is trivial
for every prime p ∈ T0, because xa`p ∈ GL2(Fp) is a scalar (its image in PGL2(Fp) is trivial).

Moreover, the p-component of h is also trivial for every prime p 6∈ T0 such that Gp is contained
in the normalizer of a Cartan subgroup. To see this, notice that a` is even and the p-component
of g̃` is a square (since g̃` itself is a square), so that both (g̃`)p and xa` belong to the Cartan
subgroup itself, which is abelian.

For all other primes p, the mod-p Galois representation is surjective. Indeed by Theorem 2.9
we know that Gp acts irreducibly on E[p] (since p 6∈ T0), by [Maz77, p. 36] we know that
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Gp is not contained in an exceptional subgroup, and by assumption Gp is not contained in
the normaliser of a Cartan subgroup. By Theorem 2.8 we then obtain SL2(Fp) ⊆ Gp, so in
particular PSL2(Fp) occurs in G∞. Since by [Ser97, p. IV-25] it cannot occur in G`∞ , which is
a subgroup of GL2(Z`), it must occur in J`. Then by Lemma 4.7, applied to G = J`, we have
that Sp := SL2(Fp)×

∏
q 6=p {1} is contained in J` for such primes p.

For each prime p, let Hp be the trivial group if p is in T0, if ρp is not surjective, or if p = `,
and let Hp = SL2(Fp) otherwise. By the above, we have (h)p = Id ∈ Hp for p = `, for all p ∈ T0,
and for all p such that ρp is not surjective, and (h)p ∈ Hp = SL2(Fp) for all other p. We now
show that [J`, J`] contains

∏
pHp. This product is topologically generated by the groups Sp

for p 6∈ T0 ∪ {`} such that the mod-p representation attached to E is surjective, so it suffices
to show that the closed subgroup [J`, J`] contains Sp for every such p. This follows from the
fact that SL2(Fp) is a perfect group, that is it coincides with its own commutator subgroup, so
[J`, J`] ⊇ [Sp, Sp] = Sp. Thus we get h ∈

∏
pHp ⊆ [J`, J`].

We have then checked all the hypotheses needed to apply Proposition 4.5, and we conclude
by noting that

v`(a`) =


4 if ` = 2,

2 if ` = 3,

1 if ` = 5, 7,

0 if ` > 11.

In the CM case we can say something much stronger: we prove a bound that is valid for all
number fields and only depends on the degree of the field of definition of the elliptic curve.

Theorem 4.9. Let K be a number field of degree d and let E/K be an elliptic curve such that
EK has CM by an order R in the quadratic imaginary field F . Let h = #R× ∈ {2, 4, 6} and
g = [FK : K] ∈ {1, 2}. For every prime `, let e` = mina∈Z×`

v`(a
hd − 1). Then e` is finite

for all primes ` and zero for all but finitely many `, and the exponent of the cohomology group
H1(G∞, T ) divides g

∏
` `
e` for all Galois submodules T of Etors.

Proof. Let H = Gal(K∞ | KF ), so that H is a subgroup of G∞ of index g (recall that the
field of complex multiplication is contained in K∞). Let Cor and Res denote respectively the
corestriction map from H1(H,−) to H1(G∞,−) and the restriction map from H1(G∞,−) to
H1(H,−). As is well-known, one has the equality Cor ◦ Res = [g]. Let e be the exponent of
H1(G∞, T ) and e′ be the exponent of H1(H,T ). Observe now that [e′] is zero on H1(H,T ), so
one gets

[ge′] = [e′] ◦ Cor ◦ Res = Cor ◦ [e′] ◦ Res = Cor ◦ [0] = [0]

on H1(G∞, T ). Thus the exponent of this latter group divides ge′; it now suffices to bound e′.
By the theory of complex multiplication the Galois group H is abelian. We identify this group

with a subgroup of
∏
` GL2(Z`), and regard g ∈ H as a collection (g`)` of elements in GL2(Z`).

Since H is abelian, Lemma 4.2 applies to any (g`)` ∈ H, so H1(H,T ) is killed by (g` − 1)`.
Writing H1(H,T ) =

⊕
`H

1(H,T [`∞]), we see that each direct summand H1(H,T [`∞]) (which
is the pro-` part of H1(H,T )) is killed by g` − 1 for every (g`)` ∈ H.

Let now H`∞ be the projection of H to GL2(Z`), or equivalently the image of the `-adic
representation attached to E/FK. We know from [Lom17, Theorem 6.6] (or [BC20a, Theo-
rem 1.1(a)]) that H`∞ is contained in (R ⊗ Z`)×, and that [(R ⊗ Z`)× : H`∞ ] | h2 [FK : Q].
Notice that [Lom17, Theorem 6.6] only gives an inequality, but it is clear from the proof that
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we actually have divisibility. In particular, [Z×` : Z×` ∩ H`∞ ] divides h
2 [FK : Q], so for every

a ∈ Z×` the scalar ah[FK:Q]/2 is in H`∞ , and multiplication by ah[FK:Q]/2 − 1 kills H1(H,T [`∞]).
Notice that h[FK : Q]/2 divides hd, so the same statement holds with ah[FK:Q]/2 − 1 replaced
by ahd − 1. As H1(H,T [`∞]) is a (pro-)` group, this shows that the exponent of H1(H,T [`∞])
is finite and divides `e` . Finally, for ` − 1 > hd, choosing a that is a primitive root modulo `
gives v`(a

hd− 1) = 0, hence e` = 0 and H1(H,T [`∞]) is trivial for all such primes. The theorem
now follows from the fact that the exponent e′ of H1(H,T ) is the least common multiple of the
exponents of the groups H1(H,T [`∞]) as ` varies among the primes.

In the special case K = Q we may further improve the previous result.

Proposition 4.10. Let E/Q be an elliptic curve such that EQ has CM. The exponent e of the

cohomology group H1(G∞, T ) divides 22 · 3 for all Galois submodules T of Etors.

Proof. Let F be the field of complex multiplication of E, let O be the endomorphism ring of
EF , and let H = ρ∞(Gal(F/F )), considered as a subgroup of GL2(Ẑ). There are inclusions

Ẑ× ∩ H ⊆ H ⊆ (O ⊗ Ẑ)×, and [Ẑ× : Ẑ× ∩ H] 6 [(O ⊗ Ẑ)× : H]. Suppose first j 6∈ {0, 1728}.
Then [(O ⊗ Ẑ)× : H] 6 2 by [BC20a, Corollary 1.5], hence [Ẑ× : Ẑ× ∩ H] 6 2. This implies

easily that H (hence G∞) contains an element λ = (λ`) ∈
∏
` Z
×
` = Ẑ× with v2(λ2 − 1) 6 2,

v3(λ3 − 1) 6 1 and v`(λ` − 1) = 0 for all ` > 5 (for ` = 2 notice that a subgroup of index at

most 2 of Ẑ× cannot be trivial modulo 8). The claim in this case thus follows from Lemma 4.2.
When j ∈ {0, 1728} the argument is similar, but one also needs to rely on the classification of
the possible `-adic images of Galois for ` 6 7 provided by [LR18]. We give some more details for
` = 2, the other cases being similar and easier.

Suppose that all the scalars λ = (λ`) in H ∩ Ẑ× satisfy v2(λ2 − 1) > 3. Then [Ẑ× : Ẑ× ∩H]

is a multiple of 4, which (since Ẑ× is a normal subgroup of H) implies 4 | [(O ⊗ Ẑ)× : H]. Due
to [BC20a, Corollary 1.5] this must be an equality, and we must have O = Z[i] and j = 1728.
On the other hand, from the proof of Theorem 4.9 we know that the 2-part of the exponent
of H1(G∞, T ) is at most twice the 2-part of the exponent of H1(H,T ), so if the latter is not
divisible by 4 we are already done. Moreover, 4 can divide this exponent only if all the scalars
in ρ2∞(Gal(F/F )) are congruent to 1 modulo 4. By [LR18, Theorem 1.7], this implies that

[(O ⊗ Z2)× : ρ2∞(Gal(F/F ))] = 4. Combined with [(O ⊗ Ẑ)× : H] = 4, this shows that H
is the product ρ2∞(Gal(F/F )) ×

∏
`>3(O ⊗ Z`)×. By [LR18, Theorem 1.7] again, the factor

ρ2∞(Gal(F/F )) contains a scalar λ2 with v2(λ2 − 1) = 2. Since H is the above direct product,
we obtain that H (hence G∞) contains (λ2,−1,−1, . . .). Applying Sah’s lemma to this element
then shows that the 2-part of the exponent of H1(G∞, T ) divides 4.

To conclude this section we discuss the case of Serre curves, namely those elliptic curves over
Q for which [GL2(Ẑ) : G∞] is minimal (hence equal to 2, see [Ser72]). It is known that, when
ordered by height, 100% of elliptic curves over Q are Serre curves [Jon10], so our next theorem
describes the ‘generic’ situation. The proof combines many of the same ingredients that already
appear in Theorems 4.8 and 4.4.

Theorem 4.11. Suppose E/Q is a Serre curve. For every Galois submodule T of Etors we have

H1(G∞, T ) =

{
Z/2Z, if T [2] 6= {0}
{0}, if T [2] = {0}.

Proof. The description of Serre curves given in [Jon10, Section 5] implies that G∞ contains

SL2(Ẑ). We will make use of two special elements of SL2(Ẑ) ⊂ G∞: one is − Id, while the other
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is h = (h2, Id, Id, . . .), where h2 =

(
0 −1
1 −1

)
∈ SL2(Z2). Notice that h2 − Id is invertible over

Z2. Let ξ : G∞ → Etors be any cocycle and let g ∈ G∞ be arbitrary. We have the equality

ξ(− Id)− ξ(g) = ξ((− Id) · g) = ξ(g · (− Id)) = ξ(g) + gξ(− Id).

Choosing g = h gives −2ξ(h) = (h − Id) · ξ(− Id) in T =
⊕

` T [`∞]. Taking into account that
the 2-adic component of h− Id is invertible, while multiplication by 2 is invertible on T [`∞] for
each ` > 2, we obtain that ξ(− Id) is divisible by 2 in T . Writing ξ(− Id) = −2a for some a ∈ T
we then have 2(ξ(g) − (g · a − a)) = 0, that is, the cocycle ξ is cohomologous to the cocycle
g 7→ ξ(g)− (g · a− a) with values in T [2].

We have thus shown that the natural map H1(G∞, T [2])→ H1(G∞, T ) is surjective. It is also
injective, as one sees by taking the cohomology of the exact sequence 0→ T [2]→ T → 2T → 0
and observing that H0(G∞, T ) = H0(G∞, 2T ) = (0). Hence H1(G∞, T ) = H1(G∞, T [2]). We
now describe this group. Let N = ker(G∞ → G2∞), so that G∞/N ∼= G2∞ = GL2(Z2). The
inflation-restriction sequence yields

0→ H1(G/N, T [2])→ H1(G∞, T [2])→ H1(N,T [2])G∞ ,

so it suffices to show that H1(GL2(Z2), T [2]) is either trivial or isomorphic to Z/2Z according
to whether T [2] is trivial or not, while H1(N,T [2])G∞ vanishes. We prove the latter statement
first. Since N acts trivially on T [2] by construction we have H1(N,T [2])G∞ = Hom(N,T [2])G∞ .
The conjugation action of h ∈ G∞ on N is trivial (the only nontrivial coordinate of h is h2,
while elements of N have trivial 2-adic component), so a homomorphism ϕ ∈ Hom(N,T [2]) is
h-invariant if and only if for all n ∈ N we have ϕ(n) = (hϕ)(n) = h ·ϕ(h−1nh) = h ·ϕ(n). Since
h acts on T [2] via h2, which has no nonzero fixed points on T [2], this implies that the only h-
invariant homomorphism N → T [2] is the trivial one. Thus H1(N,T [2])G∞ vanishes as claimed.
Finally consider H1(GL2(Z2), T [2]). Notice that T [2] is a Galois submodule of E[2], so we either
have T [2] = E[2] or T [2] = {0}. In the latter case the cohomology group certainly vanishes, so we
can assume T [2] = E[2]. As in the proof of Theorem 4.4, every cocycle GL2(Z2)→ E[2] factors
via GL2(Z2)/〈g2 : g ≡ Id (mod 2)〉, hence in particular via GL2(Z/8Z). Thus it suffices to check
that H1(GL2(Z/8Z), E[2]) = Z/2Z, which is easy to do directly with the help of a computer
algebra sofware.

5 The algebra Z`[G`∞]

Following the strategy suggested by [Chapter 1, Proposition 4.12], in order to study the degrees
of Kummer extensions in the next section we now study the algebra A = Z`[G`∞ ], by which we
mean the closed subalgebra of Mat2×2(Z`) generated by G`∞ ⊆ Mat2×2(Z`). The hardest case is
when the action of G` on E[`] is reducible, and to handle this situation we rely on the following
general estimate for A.

Proposition 5.1. Let E be an elliptic curve over a number field K having at least one real place.
Let ` > 2 be a prime number. Suppose that G` acts reducibly on E[`] and let `m be the maximal
degree of an `-power cyclic isogeny E → E′ defined over K. The algebra A = Z`[G`∞ ] contains
`m Mat2×2(Z`).

Proof. We claim that there exists a basis of T`E with respect to which G`∞ contains

(
1 0
0 −1

)
.

To see this, let τ ∈ Gal(K/K) be a complex conjugation, corresponding to a real embedding
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K ↪→ R (one exists by assumption), and let h = ρ`∞(τ). Then we have h2 = Id and deth =
χ`∞(τ) = −1, which implies that the eigenvalues of h are ±1. It follows that h can be diagonalised
over Q`, and also over Z` since its eigenvalues are distinct modulo ` 6= 2. As the conclusion
of the proposition is independent of the choice of basis, we may assume that h = ρ`∞(τ) =(

1 0
0 −1

)
∈ A. It follows that E11 :=

(
1 0
0 0

)
= 1

2 (1 +h) and E22 :=

(
0 0
0 1

)
= 1

2 (1−h)

are in A. By assumption, E does not admit a cyclic isogeny of degree `m+1 defined over K.
In terms of the matrix representation of the Galois action, this implies in particular that G`∞

contains a matrix M1 whose coefficient in position (2, 1) is nonzero modulo `m+1 (for otherwise,

〈
(

1
0

)
〉 ⊂ (Z/`m+1Z)2 ∼= E[`m+1] would be a Galois-stable cyclic subgroup of order `m+1), and

similarly it also contains a matrix M2 whose (1, 2)-coefficient is nonzero modulo `m`+1. Thus

we have E22M1E11 =

(
0 0
a 0

)
with v`(a) 6 m and E11M2E22 =

(
0 b
0 0

)
with v`(b) 6 m.

The four matrices E11, E22, E22M1E11 and E11M2E22 are all in A, and their Z`-span contains
`m Mat2×2(Z`).

Remark 5.2. The exponent m is optimal. Indeed, if E admits a K-rational isogeny of degree `m,
choosing a suitable basis of T`E we can ensure that G`m consists of upper-triangular matrices.
In particular, the (2,1)-coefficient of all matrices in Z`[G`∞ ] is divisible by `m, so that the result
cannot be improved.

We also give a variant of the previous result for ` = 2. Notice that in this case we do not
require that E[2] be reducible.

Proposition 5.3. Let E be an elliptic curve over a number field K having at least one real place.
Let 2m be the maximal degree of a 2-power cyclic isogeny E → E′ defined over K (including m = 0
if there are no such isogenies). The algebra A = Z2[G2∞ ] contains 2m+1 Mat2×2(Z2).

Proof. Let τ ∈ Gal(K | K) be a complex conjugation. There is a basis of T2E whose first
element is fixed by ρ2∞(τ): indeed, τ fixes all torsion points in E(R), whose identity component
is isomorphic to the circle group, hence contains a compatible family of 2n-torsion points. It

follows easily that ρ2∞(τ) is GL2(Z2)-conjugate to either

(
1 0
0 −1

)
or

(
1 1
0 −1

)
. In the first

case one may reason as in Proposition 5.1 to obtain that Z2[G2∞ ] contains 2E11, 2E22, 2E22M1,
and 2M2E22, hence that it contains 2m+1 Mat2×2(Z2). In the second case, suppose first that G2

acts on E[2] with a fixed point P , which is necessarily the first 2-torsion point in the given basis
of E[2] ∼= T2E/2T2E. Let E → E′ be the 2-isogeny with kernel 〈P 〉. The 2-adic representations

attached to E,E′ differ by conjugation by

(
2 0
0 1

)
. The 2-adic representation attached to

E′ maps τ to

(
1 2
0 −1

)
, which is GL2(Z2)-conjugate to

(
1 0
0 −1

)
. Moreover, the maximal

degree of a 2-power isogeny E′ → E′′ is at most 2max{m−1,1} The previous arguments then apply
to E′, hence the corresponding algebra A′ contains 2max{m−1,1}+1 Mat2×2(Z2). Conjugating back
we find that A contains 2max{m,2}+1 Mat2×2(Z2), and a direct check for m = 1 finishes the proof

in this case. Finally, if ρ2∞(τ) =

(
1 1
0 −1

)
and E[2] is an irreducible Galois module (hence

m = 0), then G2 = GL2(F2) (notice that #G2 is even since ρ2(τ) is nontrivial). This implies
G2 = GL2(F2), from which it follows that the reduction modulo 2 of A is all of Mat2×2(F`). By
Nakayama’s lemma we obtain A = Mat2×2(Z2).
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For the irreducible case (and ` > 2) we rely instead on the following two observations. The
first one is well-known (see for example [BJR91, Remark after Theorem 2]); it is usually stated
for elliptic curves over Q, but – as in the previous propositions – it only depends on the number
field having a real place.

Lemma 5.4. Let K be a number field having at least one real place, ` > 2 be a prime number,
E/K be an elliptic curve, and G` ⊆ GL2(F`) be the image of the mod-` Galois representation.
The action of G` on E[`] is either reducible or absolutely irreducible.

Corollary 5.5. Let K be a number field having at least one real place, ` > 2 be a prime
number, and E/K be an elliptic curve. If E[`] is an irreducible Galois module, then the algebra
A = Z`[G`∞ ] is all of Mat2×2(Z`).

Proof. Let A ⊆ Mat2×2(F`) be the image of A under reduction modulo `. By Nakayama’s lemma,
it suffices to prove that A = Mat2×2(F`). Notice that A = F`[G`]. As G` acts irreducibly on
E[`] ∼= F2

` by assumption, Lemma 5.4 shows that it also acts irreducibly on E[`] ⊗F` F`, hence

the natural module F`
2

for A ⊗F` F` is irreducible. By [EGH+11, Theorem 3.2.2] we obtain
A⊗F` F` = Mat2×2(F`), which implies A = Mat2×2(F`).

We now specialise to the case K = Q. For ` = 2 we have the following.

Proposition 5.6. Let E be an elliptic curve over Q. The algebra Z2[G2∞ ] contains 24 Mat2×2(Z2),
and if E has potential complex multiplication it also contains 23 Mat2×2(Z2).

Proof. If E does not have complex multiplication over Q we can check the claim directly by a
short computer calculation, looping over all subgroups of GL2(Z2) that can arise as the image
of the 2-adic representation (the list of such groups is known as a consequence of the results
in [RZB15]). If E has CM over Q, then every 2-power isogeny E → E′ defined over Q has
degree dividing 4 (see for example [BC20b, Remark 5.2]). It follows from Proposition 5.3 that A
contains 23 Mat2×2(Z2).

Remark 5.7. The result is optimal. This follows from [RZB15] in the non-CM case, while in the
CM case it suffices to consider an elliptic curve with CM by Z[

√
−4], see [LR18, Theorem 1.6].

We are now ready to obtain a uniform lower bound on the algebra A.

Theorem 5.8. Let E be an elliptic curve over Q and let ` be a prime number. Set

mnon-CM,` =


4, if ` = 2

2, if ` = 3, 5

1, if ` = 7, 11, 13, 17, 37

0, otherwise

mCM,` =


3, if ` = 2, 3

1, if ` = 7, 11, 19, 43, 67, 163

0, otherwise

and m` = mCM,` or m` = mnon-CM,` according to whether or not EQ has CM. The algebra
A = Z`[G`∞ ] contains `m` Mat2×2(Z`).

Proof. The case ` = 2 is covered by Proposition 5.6. If ` 6∈ T0 ∪{19, 43, 67, 163} (or just ` 6∈ T0 if
E is not CM), by Theorem 2.9 the curve E does not admit any rational subgroup of order `, so
E[`] is irreducible as a G`-module and we can apply Corollary 5.5. For the remaining cases we
apply Proposition 5.1, reading from [Ken82, Theorem 1] the maximal degrees of cyclic isogenies
of `-power degree. Notice that isogenies of degree 33 are possible only for CM elliptic curves,
see [Ogg73, p. 229]. Also notice that `-isogenies between rational CM elliptic curves are only
possible for ` ∈ {2, 3, 7, 11, 19, 43, 167}, as follows for example from [BC20b, §5].
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6 Kummer degrees

Let E be an elliptic curve over a number field K and let α ∈ E(K) be a point of infinite order.
We give a brief description of the construction of the Kummer extensions of K attached to (E,α),
and refer the reader to [Chapter 1, Section 2.3], [JR10, Section 3], [BP21], or [LP21] for more
details.

Let (M,N) be either a pair of positive integers with N | M , or (∞, N) with N a positive
integer. We define KM,N as the extension of KM generated by the coordinates of all points
β ∈ E(K) such that Nβ = α. The homomorphism

κM,N : Gal(K | KM ) → E[N ]
σ 7→ σ(β)− β (6.1)

is independent of the choice of β ∈ E(K) such that Nβ = α, and has kernel Gal(K | KM,N ),
hence identifies Gal(KM,N | KM ) with a subgroup of E[N ]. We will also need to pass to the
limit in N : if ` is a prime number, we denote by K∞,`∞ the extension of K∞ generated by the
coordinates of the points β ∈ E(K) that satisfy `nβ = α for some n > 0. Similarly, we write
K∞,∞ for the extension of K∞ generated by the coordinates of the points β ∈ E(K) that satisfy
Nβ = α for some N > 1. Passing to the limit in N in Equation (6.1) we obtain an identification
of Gal(K∞,`∞ | K∞) with a Z`-submodule V`∞ of T`E ∼= Z2

` , and of Gal(K∞,∞ | K∞) with a

Ẑ-submodule V∞ of TE ∼= Ẑ2. We remark that V`∞ is the projection of V∞ to Z2
` , and since

V`∞ is a pro-` group and there are no nontrivial continuous morphisms from a pro-` group to a
pro-`′ group for ` 6= `′ we have V∞ =

∏
` V`∞ . Finally, we recall the following fact, which will be

crucial in our applications.

Lemma 6.1 ([Chapter 1, Lemma 2.5]). For every prime `, the Z`-module V`∞ ⊆ Z2
` is also a

module for the natural action of G`∞ ⊆ GL2(Z`) on Z2
` .

We are interested in studying the degrees

[KM,N : KM ] (6.2)

as the positive integers N | M vary. As explained above, the Galois group Gal(KM,N | KM ) is
isomorphic to a subgroup of E[N ], which has order N2, so the ratio

N2

[KM,N : KM ]
(6.3)

is an integer. It is well-known that (6.3) is bounded independently of the integers M and N (see
for example [Ber88, Théorème 1], [Hin88, Lemme 14], or [Rib79]). In [Chapter 1] we have shown
that, if K = Q and the image of α in the free abelian group E(K)/E(K)tors is not divisible by
any n > 1, this ratio can be bounded independently also of E and α. We will now provide an
explicit value for this bound.

Remark 6.2. It is immediate to check that the ratio (6.3) divides
N2

[K∞,N : K∞] ’
which in turn

divides the index of V∞ in Ẑ2.

Lemma 6.3. Let E be an elliptic curve over a number field K and let α ∈ E(K) be a point
whose image in the free abelian group E(K)/E(K)tors is not divisible by any n > 1. Let e be
a positive integer such that, for all positive integers N , the group H1(G∞, E[N ]) has exponent
dividing e. For every prime ` the group V`∞ contains an element of `-adic valuation at most
v`(e).
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Proof. This follows immediately from [Chapter 1, Lemma 7.8(1)] since for any positive integers
M,N with N |M the exponent of H1(GM , E[N ]) divides e (Lemma 4.1).

Lemma 6.4. Let E be an elliptic curve over a number field K and let α ∈ E(K). Suppose that
V`∞ contains an element v of `-adic valuation at most d and that Z`[G`∞ ] ⊇ `n Mat2×2(Z`) for
some non-negative integer n. Then [T`E : V`∞ ] divides `n+2d.

Proof. We may assume without loss of generality that v has exact valuation d. Up to a choice

of isomorphism T`E ∼= Z2
` we may then further assume v = `d

(
1
0

)
. The Z`[G`∞ ]-module

V`∞ contains `n Mat2×2(Z`) · v, hence in particular contains `n+d

(
0
1

)
, and the claim follows

immediately.

Theorem 6.5. Let E be an elliptic curve defined over Q and let

Bnon-CM := (224 × 316 × 56 × 76 × 114)× (24 × 32 × 52 × 7× 11× 13× 17× 37)

BCM := (24 × 32)× (23 × 33 × 7× 11× 19× 43× 67× 163).

Set B = BCM or B = Bnon-CM according to whether or not EQ has complex multiplication. For
all positive integers M and N with N |M the ratio (6.3) divides B.

Proof. Let e be a positive integer such that [e] kills H1(G∞, E[N ]) for all positive integers N .
For every prime ` let m` be a non-negative integer such that Z`[G`∞ ] contains `m` Mat2×2(Z`).
As explained above, the ratio (6.3) divides

[Ẑ2 : V∞] =
∏
`

[Z2
` : V`∞ ] ,

and by Lemmas 6.3 and 6.4 we have that

[Z2
` : V`∞ ] divides `m`+2v`(e).

The conclusion then follows by taking e as in Theorem 4.8 (for the non-CM case) or as in
Proposition 4.10 (for the CM case), and m` as in Theorem 5.8.

Remark 6.6. Taking into account Remark 3.15, one can take v3(e) = 6 instead of 8 in Theo-
rem 4.8, so that the exponent of 3 in Bnon-CM can be improved from 18 to 14.

7 Examples

In this short section we give examples showing that most of our results are sharp or close to
being sharp. We start with Theorems 4.4 and 4.8. For every positive integer N we have an exact
sequence of Gal(Q | Q)-modules

0→ E[N ]→ Etors
[N ]−−→ Etors → 0,

and taking Galois cohomology we get

0→ E(Q)tors

NE(Q)tors
→ H1(G∞, E[N ])→ H1(G∞, Etors)[N ]→ 0.
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As it is well-known that there exist elliptic curves over Q with torsion points of order 23, 32, 5, 7,
taking N equal to each of these numbers in turn shows that the constant of Theorem 4.8 has to
be divisible at least by 23 ·32 ·5 ·7. Moreover, by [LW15, Theorem 1] we know that there exists an
elliptic curve E/Q with H1(G11, E[11]) 6= 0. Thus in particular all the primes appearing in the
constant of Theorem 4.8 are necessary. A simple variant of this argument, working with E[`∞]
instead of Etors, also shows that Theorem 4.4 is optimal at least for ` 6= 3. As already remarked
in the introduction we do not seek to obtain the best possible value for ` = 3, but in any case
our estimate is not far from sharp: the previous argument shows that the optimal value of n3 is
at least 2, while Theorem 4.4 shows that 3 suffices.

Consider now the CM case and Proposition 4.10. The elliptic curve with LMFDB label 27.a2
[LMF22, 27.a2] admits a rational 3-torsion point and no other 3-isogenies defined over Q, hence it
satisfies the hypotheses of [LW15, Theorem 1], which proves that for this curve H1(G3, E[3]) 6= 0.
Thus the factor 3 in Proposition 4.10 is necessary. As for the power of 2, the curve with LMFDB
label 32.a2 [LMF22, 32.a2] has potential CM and a rational 4-torsion point, which as above
shows that H1(G2∞ , E[4]) has exponent 4. Thus Proposition 4.10 is sharp.

Finally we turn to the primes that can appear in the ratio of Equation (6.3). In order to find
examples where a given prime ` divides the degree (6.3) we proceed as follows. Let E/Q be a
rational elliptic curve and let P ∈ E(Q) be a point not divisible by any n > 1 in E(Q)/E(Q)tors.
For a fixed prime ` > 2, we write the multiplication by ` map as

[`](x, y) =

(
φ`(x)

ψ`(x)2
,
ω`(x, y)

ψ`(x)3

)
as in [Sil09, Exercise 3.7] and consider the polynomial g(x) = φ`(x) − x(P )ψ`(x)2 ∈ Q[x].
Suppose that this polynomial has an irreducible factor g1(x) ∈ Q[x] of degree strictly less than
`2

2 (equivalently, for ` > 2, that g(x) is reducible), and let L be the field generated over Q by a root
x1 of g1(x). Over an at most quadratic extension L′ of L, the elliptic curve E admits a point Q

with x-coordinate equal to x1. It follows that [`]Q =
(
φ`(x1)
ψ`(x1)2 , y([`]Q)

)
= (x(P ), y([`]Q)) = ±P ,

because the only two points on E with x-coordinate equal to x(P ) are ±P . In particular, at least
one `-division point of P (namely ±Q) is defined over L′, which has degree strictly less than `2

over Q. Since all `-division points of P are obtained from ±Q by adding a `-torsion point, the
field Q`,` is the compositum of L′ and Q(E[`]), hence [Q`,` : Q(E[`])] 6 [L′ : Q] < `2. It follows
that in this case the prime ` divides the ratio (6.3) for M = N = `.

We have considered several pairs (E,P ) taken from the LMFDB [LMF22], and have computed
(for well-chosen primes `) the factorisation of the polynomial g(x) above. For each prime `
appearing as a factor of the constants of Theorem 6.5, we have thus been able to find examples
of pairs (E,P ) for which ` divides the index (6.3) in the case M = N = `, and this both for
CM and non-CM curves (for ` = 2 we proceeded differently and explicitly computed the field
generated by the 2-division points of P ; this easily yields examples). In particular, this shows
that the prime factors of the constants of Theorem 6.5 are all necessary.

We would like to point out that for most primes ` we have found several examples of the
behaviour described above (for ` = 163 we have only been able to test two curves, and only one
of them yielded an example). It is hard to make conjectures based on the limited evidence we
have collected, but it seems plausible that ` divides the Kummer degree (6.3) (with M = N = `)
for a positive proportion of rank-1 curves E/Q whose mod-` Galois representation lands in a
Borel (when P is taken to be a generator of the free part of E(Q)). In Tables 2.1 and 2.2 we
give one explicit example for every relevant prime, both for non-CM and CM curves, specifying
the curve E/Q together with its LMFDB label and the point P ∈ E(Q).

https://www.lmfdb.org/EllipticCurve/Q/27/a/2
https://www.lmfdb.org/EllipticCurve/Q/32/a/2
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` E LMFDB Label P

2 y2 + xy + y = x3 − x2 − 41x+ 96 117.a3 (2,−6)

3 y2 + y = x3 + x2 − 7x+ 5 91.b2 (−1, 3)

5 y2 = x3 − x2 − x− 1 704.c3 (2, 1)

7 y2 + xy = x3 − x2 − 389x− 2859 338.c1 (26, 51)

11 y2 + xy + y = x3 − x2 − 32693x− 2267130 1089.c1 (212, 438)

13 y2 + y = x3 − 8211x− 286610 441.a1 (235, 3280)

17 y2 + xy + y = x3 − x2 − 27365x− 1735513 130050.gu2 ( 4047
4

, 249623
8

)

37 y2 + xy + y = x3 + x2 − 208083x− 36621194 1225.b1 (1190, 36857)

Table 2.1: Primes ` dividing the relative Kummer degree (6.3), non-CM curves.

` E LMFDB Label P

2 y2 = x3 − 36x 576.c3 (−2,−8)

3 y2 + y = x3 − 34 225.c1 (6, 13)

7 y2 = x3 − 1715x− 33614 784.f2 (57, 232)

11 y2 + y = x3 − x2 − 887x− 10143 121.b1 (81, 665)

19 y2 + y = x3 − 13718x− 619025 361.a1 (2527, 126891)

43 y2 + y = x3 − 1590140x− 771794326 1849.b1 P43

67 y2 + y = x3 − 33083930x− 73244287055 4489.b1 P67

163
y2 + y = x3 − 57772164980x

−5344733777551611
26569.a1 P163

Table 2.2: Primes ` dividing the relative Kummer degree (6.3), CM curves.

https://www.lmfdb.org/EllipticCurve/Q/117/a/3
https://www.lmfdb.org/EllipticCurve/Q/91/b/2
https://www.lmfdb.org/EllipticCurve/Q/704/c/3
https://www.lmfdb.org/EllipticCurve/Q/338/c/1
https://www.lmfdb.org/EllipticCurve/Q/1089/c/1
https://www.lmfdb.org/EllipticCurve/Q/441/a/1
https://www.lmfdb.org/EllipticCurve/Q/130050/gu/2
https://www.lmfdb.org/EllipticCurve/Q/1225/b/1
https://www.lmfdb.org/EllipticCurve/Q/576/c/3
https://www.lmfdb.org/EllipticCurve/Q/225/c/1
https://www.lmfdb.org/EllipticCurve/Q/784/f/2
https://www.lmfdb.org/EllipticCurve/Q/121/b/1
https://www.lmfdb.org/EllipticCurve/Q/361/a/1
https://www.lmfdb.org/EllipticCurve/Q/1849/b/1
https://www.lmfdb.org/EllipticCurve/Q/4489/b/1
https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
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The points P43 and P67 are given by P43 =

(
66276734

29929
,−419567566482

5177717

)
and

P67 =

(
49970077554856210455913

1635061583290810756
,

10956085084392718114395997318977993

2090745506172424414999081096

)
respectively. The point P163 is the unique generator of E(Q) ∼= Z with positive y-coordinate;
it has canonical height approximately equal to 373.48, so its coordinates are too large to be
displayed here, but they can be found at [LMF22, Elliptic Curve 26569.a1].

We have also considered the divisibility of (6.3) by higher powers of `. Experiments analogous
to the above are computationally intensive, so we only studied the very small primes 2 and 3.
An example where the index (6.3) is divisible by 16 was found by Rouse and Cerchia [CR21]:
letting E : y2 = x3 − 343x+ 2401 and P = (0,−49), there is a point P4 ∈ E(Q(E[8])) such that
4P4 = P . This implies that 24 divides (6.3) for N = 4,M = 8. We found several other examples
in which (6.3) is divisible by 24 for suitable values of M,N , but no example involving higher
powers of 2. This might in part be due to the fact that – for computational reasons – we have
only been able to extend our search to M = 8, N |M .

Remark 7.1. J. Rouse recently informed us that he constructed an example where (6.3) is
divisible by 26 when M and N are sufficiently large powers of 2.

For ` = 3 we consider
E : y2 + y = x3 − 6924x+ 221760

and P = (2354/49,−176/343), which is a generator of E(Q)/E(Q)tors. Write g(x) for the
polynomial whose roots are the x-coordinates of the 9-division points of P : one may check
that g(x) ∈ Q[x] has an irreducible factor g1(x) of degree 9. Further denote by ψ9(x) the 9-th
division polynomial of E, whose roots are the x-coordinates of the points in E[9]. We have also
computed that the Galois groups of ψ9(x), g1(x) and ψ9(x)g1(x) over Q have order 462, 27 and
3 ·462 respectively. This proves that the Galois group of g1(x) over Q(E[9]) has order 3, hence in
particular that g1(x) becomes reducible over Q(E[9]). A 9-division point of P is then defined over
an extension of Q(E[9]) of degree at most (and in fact exactly) 3. As before, all other 9-division
points are defined over the same field, hence the relative Kummer degree (6.3) is divisible by 33

for M = N = 9. We have found other examples where 33 divides (6.3), but none involving a
factor 34; as with ` = 2, it is entirely possible that this is only due to the limits of our search
range.

2.A Scalars in pro-p subgroups of GL2(Zp)
In this appendix we prove an abstract group-theoretic result, used in Section 3.3 to study the
subgroup of scalar matrices in the image of the 3-adic representation attached to a non-CM elliptic
curve over Q. In the statement and proof of Proposition 2.A.1 we will employ the notation Hpn

for the reduction modulo pn of a closed subgroup H of GL2(Zp) (cf. Section 3.1).

Proposition 2.A.1. Let p be an odd prime, H be a closed pro-p subgroup of GL2(Zp), and k be
a positive integer. Suppose that the following hold:

1. Hp has order p,

2. Hpk is not contained in the subgroup of upper- or lower-triangular matrices;

3. det(H) = 1 + pZp;

https://www.lmfdb.org/EllipticCurve/Q/26569/a/1
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4. H is normalised by C :=

 1 0

0 −1

.

Then H contains all scalars congruent to 1 modulo pk.

Remark 2.A.2. From a group-theoretic point of view this result is optimal, at least in the case
p = 3, k = 3 that we are interested in. The subgroup H of GL2(Z3) given by the inverse image
of the subgroup of GL2(Z/33Z) generated by the matrices 10 0

0 16

 ,

 10 9

23 10


satisfies all the properties (1)-(4) in the statement, and

H ∩ Z×3 = {λ ∈ Z×3 : λ ≡ 1 (mod 33)}.

Remark 2.A.3. We also note that the methods of [Pin93] and [Lom15, §4] are not easily appli-
cable here, since there is no reason to expect a group H as in the statement of Proposition 2.A.1
to be open in GL2(Zp). This implies that the Zp-integral Lie algebra L attached to H by [Pin93]
could be quite small, with L/[L,L] infinite, which makes it hard to extract useful information
from the main theorem of [Pin93].

The proof of the proposition is by induction: we will show that, for every n > k, the group
Hpn contains all scalars congruent to 1 modulo pk. Since H is closed this gives the desired
conclusion.

Remark 2.A.4. The group Hp is cyclic, generated by any element g of order p. The condi-
tion that H be stable under conjugation by C implies easily that g is either upper- or lower-
unitriangular (that is, triangular with diagonal coefficients equal to 1). This shows in particular

that for every h =

 a b

c d

 ∈ H we have a ≡ d ≡ 1 (mod p), so that the diagonal entries

of h − Id are divisible by p. Any h ∈ H may therefore be written as h = λ Id +D + A, where
λ = 1

2 tr(h) ≡ 1 (mod p), D is diagonal, tr(D) = 0, D ≡ 0 (mod p), and A is anti-diagonal. This
decomposition will play an important role in the proof.

The following lemma will be key in our approach.

Lemma 2.A.5. Let p be an odd prime, let Hpn be a p-subgroup of GL2(Z/pnZ) stable under

conjugation by C :=

 1 0

0 −1

, and let M be an element of Hpn . Consider the sequence of

elements of Hpn defined by M0 = M and Mi+1 = Mi · CMiC
−1. Then:

1. for every i > 0, the elements detMi and detM generate the same subgroup of (Z/pnZ)×;

2. write each Mi as λi Id +Di + Ai, where Di is diagonal and has trace 0 and Ai is anti-
diagonal. Then there exists a scalar µi ∈ (Z/pnZ)× such that Di = µiD0;

3. the matrix Mi is diagonal for all i > n.
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Proof. For the first statement we have det(Mi+1) = det(Mi)
2 and the map x 7→ x2 is an auto-

morphism of the abelian p-group det(H). Write now Mi = λi Id +Di + Ai as in the statement.
It follows from Remark 2.A.4 that Di ≡ 0 (mod p). One computes CMiC

−1 = λi Id +Di − Ai
and therefore

Mi+1 = (λi Id +Di +Ai) (λi Id +Di −Ai)
= λ2

i +D2
i + 2λiDi −A2

i + [Ai, Di].

Notice that D2
i is a multiple of the identity (since the two diagonal elements of Di are opposite

to each other, hence have the same square), and so is A2
i , while [Ai, Di] is anti-diagonal. Hence{

Di+1 = 2λiDi

Ai+1 = [Ai, Di],

which immediately implies the statement about Di since (2λi, p) = 1. Moreover, since vp(Di) > 1
we have vp(Ai+1) > vp(Ai) + 1: in particular, for i > n we have vp(Ai) > n, hence for such i the
matrix Ai is 0 and Mi is diagonal.

We notice in particular the following immediate consequence of the previous lemma:

Corollary 2.A.6. Let Hpn be a p-subgroup of GL2(Z/pnZ) stable under conjugation by C, and
let Dn be the subgroup of diagonal matrices in Hpn . Then det(Hpn) = det(Dn).

Proof. The group det(Hpn) is contained in (Z/pnZ)×, hence is cyclic. Let M ∈ Hpn be a matrix
whose determinant generates det(Hpn): by the previous lemma, we can find a diagonal matrix
whose determinant generates the same subgroup as det(M).

Before proving Proposition 2.A.1 we need one further definition:

Definition 2.A.7. For n > 1 we let Ln be the image of the map

ker(Hpn+1 → Hpn) → Mat2×2(Fp)

g 7→ g−Id
pn .

The formulas

(Id +pnM1)(Id +pnM2) ≡ Id +pn(M1 +M2) (mod pn+1)

and (Id +pnM)p ≡ Id +pn+1M (mod pn+2), valid for all n > 1, show that the set Ln is an
additive subgroup of Mat2×2(Fp), and that moreover Ln ⊆ Ln+1 for all n > 1.

We further observe that since C normalises H the subspace Ln of Mat2×2(Fp) is stable under
conjugation by C. Since p is odd, the conjugation action of C on Mat2×2(Fp) decomposes
it as the direct sum of the subspaces of diagonal and anti-diagonal matrices. We then have a
corresponding decomposition Ln = dn⊕an, where dn (respectively an) is the subspace of diagonal
(resp. anti-diagonal) matrices in Ln. We are now ready to begin the proof proper.

Proof of Proposition 2.A.1. We show by induction on n that Hpn contains all scalar matrices
congruent to 1 modulo pk. Notice that the claim is trivial for n 6 k, so we only need to take
care of the inductive step. For each positive integer n we denote by Dn the subgroup of diagonal
matrices in Hpn and by Λn the subgroup {λ ∈ (Z/pnZ)× : λ ≡ 1 (mod p)} of (Z/pnZ)×.
By Corollary 2.A.6 and the hypothesis det(H) = 1 + pZp (hence det(Hpn) = Λn) we have
#Dn > #Λn = pn−1 for all n > 1. The kernel of the reduction map Dn+1 → Dn is isomorphic
to dn by construction. Notice that #dn ∈ {1, p, p2}.
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If #dn = p2, the map Dn+1 → Dn is p2-to-1, which implies that, for every element in Dn, all
its p2 diagonal lifts to GL2(Z/pn+1Z) are in Dn+1. In particular, since (1 + pk) Id mod pn is an
element of Dn by the inductive hypothesis and (1 + pk) Id mod pn+1 is one such possible lift, we
obtain immediately that (1 + pk) Id is in Hpn+1 , and the induction step is complete (notice that
the cyclic subgroup generated by (1 + pk) Id contains all scalars congruent to 1 modulo pk).

Suppose on the other hand that #dn | p. Then, using the fact that #di divides #di+1, we
obtain immediately

#Dn+1 = #D1 ·#d1 · · ·#dn | pn,

which combined with our previous observation #Dn+1 > pn implies #Dn+1 = pn. In particular,

det : Dn+1 → Λn+1

is a surjective group homomorphism between groups of the same order, hence is an isomorphism.
This also implies that the only diagonal matrix in Hpn+1 with determinant 1 is the identity.

Let now d : Λn+1 → Dn+1 be the isomorphism given by the inverse of the determinant, which
we write as

d(x) =

α(x) 0

0 β(x)


for suitable group homomorphisms α(x), β(x) : Λn+1 → Λn+1. As Λn+1 is a cyclic group, we
have α(x) = xa and β(x) = xb for suitable integers a, b. Since d(x) is inverse to the determinant,
we have x = det(d(x)) = α(x)β(x) = xa+b, so that in particular a + b is relatively prime to p.
This implies that at least one between a and b is prime to p.

We now show that the intersection Sn+1 := Hpn+1 ∩SL2(Z/pn+1Z) consists of matrices of the
form λ Id +A, where λ ∈ Z/pn+1Z is a scalar and A is antidiagonal. To see this, let M ∈ Sn+1,
and write it as M = λ Id +D+A, with D diagonal of trace 0 and A antidiagonal. Lemma 2.A.5
yields a diagonal matrix M ′ = λ′ Id +D′ in Sn+1 (in particular, det(M ′) = 1) with D′ = µD for
some scalar µ prime to p. Since the only diagonal matrix with determinant 1 in Hpn+1 is the
identity, we get λ′ = 1 and D′ = 0. As µ is invertible, this implies D = 0 as desired.

On the other hand, Sn+1 – being the kernel of the determinant – is normal in Hpn+1 , hence
in particular is stable under conjugation by the diagonal matrices d(x). Let M = λ Id +A be any
element of Sn+1 and let x ∈ Λn+1. Then Sn+1 also contains d(x) ·M · d(x)−1 and their product
M · d(x) ·M · d(x)−1, that is,

(λ Id +A)(λ Id +d(x) ·A · d(x)−1). (2.A.1)

Like all elements of Sn+1, this matrix has the form λ′ Id +A′ for some scalar λ′ and some anti-
diagonal matrix A′. The diagonal part of (2.A.1) is λ2 +A ·d(x) ·A ·d(x)−1, so A ·d(x) ·A ·d(x)−1

is a multiple of the identity modulo pn+1. Writing A =

0 y

z 0

, the condition becomes

yz

(
α(x)

β(x)
− β(x)

α(x)

)
≡ 0 (mod pn+1). (2.A.2)

We will show below that there exists M ∈ Sn+1, M = λ Id +

 0 y

z 0

, with vp(yz) 6 k − 1.

Assuming for now that we have such an M , in Equation (2.A.2) we may assume vp(yz) 6 k− 1,
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hence we obtain
(
α(x)
β(x)

)2

≡ 1 (mod pn+2−k). Recalling that α(x) = xa, β(x) = xb, this rewrites

as xa ≡ xb (mod pn+2−k) (notice that x 7→ x2 is an automorphism of Λn+1). Raising to the

pk−1-th power we get xp
k−1a ≡ xpk−1b (mod pn+1), hence

xp
k−1a Id = xp

k−1b Id = d
(
xp

k−1
)
∈ Hpn+1

for every x ∈ Λn+1. Recall now that at least one between a and b is prime to p, say (a, p) = 1:
then x 7→ xa is an automorphism of Λn+1, so it follows that all the pk−1-th powers of the scalars
≡ 1 (mod p) are in Hpn+1 . The induction step is now complete, because all scalars congruent to
1 modulo pk are pk−1-th powers in Λn+1.

It only remains to show that we can find an element M ∈ Sn+1 such that, writing M =

λ Id +

 0 y

z 0

, we have vp(yz) 6 k − 1. We first prove that it is enough to find N =n11 n12

n21 n22

 ∈ Hpn+1 with vp(n12n21) 6 k − 1. Indeed, given such an N , we know from above

that there is a diagonal matrix Q =

q11 0

0 q22

 ∈ Hpn+1 with det(Q) = det(N)−1. Notice that

q11, q22 are invertible. Then NQ =

q11n11 q22n12

q11n21 q22n22

 belongs to Sn+1, so it is automatically of

the form λ Id +A, and its anti-diagonal part satisfies vp(q22n12 q11n21) = vp(n12n21) 6 k − 1 as
desired. Thus it suffices to find N ∈ Hpn+1 , of arbitrary determinant, with vp(n12n21) 6 k − 1.

By Remark 2.A.4, there exists g ∈ H that reduces modulo p to

 1 1

0 1

 or

 1 0

1 1

: for

simplicity of exposition, we only discuss the former case, the latter being completely analogous.

Consider the image

g11 g12

g21 g22

 of g in Hpk : since vp(g12) = 0, if vp(g21) 6 k−1 we are done by

taking N = g mod pn+1. Otherwise, let h ∈ H be an element whose image

h11 h12

h21 h22

 in Hpk

satisfies vp(h21) 6 k − 1: such an element exists, for otherwise Hpk would be contained in the
subgroup of upper-triangular matrices. If vp(h12) = 0 we are done by taking N = h mod pn+1,
while if vp(h12) > 0 it is easy to check that we can take N = hg mod pn+1.

Remark 2.A.8. Part of the proof is inspired by the structure theorem for reductive groups.
Indeed, in the course of the argument we prove that the diagonal torus of Hpn+1 is isomorphic to
Λn+1, which is the pro-p subgroup of Gm(Z/pn+1Z), that Sn+1 = Hpn+1∩SL2(Z/pn+1Z) (morally,
the derived subgroup) intersects the diagonal torus trivially, and finally that the conjugation
action of the torus on the “semisimple part” Sn+1 is (essentially) trivial, so that the diagonal torus
(essentially) consists of scalar matrices. This is reminiscent of the decomposition G = Z(G).G′

that holds for reductive groups, and indeed hypothesis (2) of the proposition may be seen as a
discrete analogue of the statement “H is reductive”.
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Chapter 3

Radical entanglement for elliptic
curves

by Sebastiano Tronto [Tro20]

1 Introduction

1.1 Setting

Let K be a number field and fix an algebraic closure K of K. If G is a commutative connected
algebraic group over K and A is a finitely generated and torsion-free subgroup of G(K), for
any positive integer n we may consider the field K

(
n−1A

)
, that is the smallest extension of K

inside K containing the coordinates of all points P ∈ G(K) such that nP ∈ A. This is a Galois
extension of K containing the n-th torsion field K(G[n]) of G.

If G = Gm is the multiplicative group, such extensions are studied by classical Kummer
theory. The more general case of an extension of an abelian variety by a torus is treated in
Ribet’s foundational paper [Rib79]. Under certain assumptions, for example if G is the product
of an abelian variety and a torus and A has rank 1, it is known that the ratio

ns

[K (n−1A) : K(G[n])]
(1.1)

where s is the unique positive integer such that G(K)[n] ∼= (Z/nZ)s for all n > 1, is bounded
independently of n (see also [Ber88, Théorème 5.2] and [Hin88, Lemme 14]).

In [Chapter 1] Lombardo and the author were able to give an effective bound for the ratio
(1.1) if G = E is an elliptic curve with EndK(E) = Z and A = 〈α〉 has rank 1. Moreover, a
uniform bound in the case K = Q, under some necessary assumptions on the divisibility of α in
E(K)/E(K)tors, was given.

The bounds given in [Chapter 1] essentially depend on three properties of E and α:

(1) The finitess of the divisibility of α in E(K)/E(K)tors;

(2) Properties of the `-adic Galois representations associated with E, for every prime `;

87
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(3) The finiteness of the exponent of H1(Gal(K(E(K)tors) | K), E(K)tors).

The goal of the present paper is twofold: firstly, we use the properties of r-extensions of
abelian groups introduced by Palenstijn in [Pal04] and [Pal14] to generalize the methods of
[Chapter 1] to groups A of arbitrary finite rank and any commutative connected algebraic group
G that satisfies the same properties mentioned above. The result we obtain is the following (see
Theorem 5.9):

Theorem 1.1. Let G be a commutative connected algebraic group over a number field K and
let A ⊆ G(K) be a finitely generated and torsion-free subgroup of rank r. Let s be the unique
non-negative integer such that G[n] ∼= (Z/nZ)s for all n > 1. Let H denote, after a choice of
basis, the image of the adelic Galois representation associated with G over K

Gal(K | K)→ GLs(Ẑ).

For every prime `, let H` denote the image of H under the projection GLs(Ẑ) → GLs(Z`) and
denote by Z`[H`] the closed Z`-subalgebra of Mats×s(Z`) generated by H`. Assume that

(1) There is an integer dA > 1 such that

dA · {P ∈ G(K) | ∃n ∈ N>1 : nP ∈ A} ⊆ A+G(K)tors .

(2) There is an integer N > 1 such that Z`[H`] ⊇ N Mats×s(Z`) for every prime `.

(3) There is an integer M > 1 such that the exponent of the cohomology group H1(Gal(K∞ |
K), G(K)tors) divides M , where K∞ = K(G(K)tors).

Then for every n > 1 the ratio

nrs

[K (n−1A) : K(G[n])]

divides (dANM)rs.

The first condition of Theorem 1.1 is always satisfied if G is an abelian variety or G = Gm
(see Example 5.2). We call such an integer dA a divisibility parameter for A in G(K). One has
dA = 1 if, for example, the group G(K) is finitely generated and torsion-free and A = G(K).

Notice that if a set of generators for A is known, modulo the torsion subgroup of G(K), in
terms of a Z-basis of G(K)/G(K)tors, one can compute a divisibility parameter dA. See section
6.1.

Our second goal is to apply Theorem 1.1 to some specific cases. In particular, we generalize
the results of [Chapter 1] to the case of arbitrary rank. Theorems 1.2 and 1.3 below follow from
Theorems 6.14, 6.16 and 6.17 and Lemma 5.7.

Theorem 1.2. Let E be an elliptic curve over a number field K such that EndK(E) = Z. Let
A be a finitely generated and torsion-free subgroup of E(K) of rank r. There is an effectively
computable integer N > 1, depending only on E and K, such that for every n > 1

n2r

[K (n−1A) : K(E[n])]
divides (dAN)

2r

where dA is a divisibility parameter for A in E(K).

Theorem 1.3. There is a universal constant C > 1 such that for every elliptic curve E over Q,
for every torsion-free subgroup A of E(Q) and for every n > 1

n2 rk(A)

[Q (n−1A) : Q(E[n])]
divides (dAC)

2 rk(A)

where dA is a divisibility parameter for A in E(Q).
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1.2 Notation

If A is an abelian group and n is a positive integer we denote by A[n] the subgroup of the
elements of A of order dividing n. We denote by Ators the subgroup consisting of all elements
of A of finite order. We denote by rk(A) the rank of A, that is the dimension of A ⊗Z Q as a
Q-vector space.

If R is a commutive ring, then we denote by Matn×m(R) the R-module of n ×m matrices
with entries in R, which we regard as an R-algebra if n = m. If at least one between n and m
is zero then Matn×m(R) is the R-module ring (or trivial R-algebra if n = m = 0). For n > 0 we
denote by GLn(R) the group of invertible n× n matrices with entries in R.

For any prime number ` and any non-zero integer n we denote by v`(n) the `-adic valuation

of n. We denote by Z` the ring of `-adic integers and by Ẑ the ring of profinite integers, which
we identify with the product

∏
` Z`.

If K is a number field and K is a fixed algebraic closure of K, we denote by ζn a primitive
n-th root of unity in K, for any positive integer n. If G is any algebraic group over K and L
is any field extension of K, we denote by G(L) the group of L-points of G. If S is a subset of
G(K), we denote by K(S) the subfield of K whose elements are fixed by

H =
{
g ∈ Gal(K | K) | g(P ) = P ∀P ∈ S

}
.

If G is embedded in an affine or projective space (notice that, as a consequence of Chevalley’s
structure theorem, any algebraic group over a field is quasi-projective) then K(S) coincides with
the field generated by K and any choice of affine coordinates of all points P ∈ S.

1.3 Structure of the paper

After some necessary group-theoretic preliminaries in Section 2, we investigate in Section 3 the
theory of s-extensions of abelian groups introduced by Palenstijn. Much of the content of that
section can be found, with few differences, in [Pal04].

We then move on to prove some Ẑ-linear algebra results in Section 4, and finally develop our
theory of entanglement for commutative algebraic groups in Section 5. In Section 6 we apply
this theory to the case of elliptic curves without complex multiplication.
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2 Group-theoretic preliminaries

We collect here some basic group-theoretic results that we will need throughout this paper.

2.1 Pontryagin duality

Let G be a locally compact Hausdorff topological abelian group. Let S1 = R/Z with the usual
topology. The group Hom(G,S1) of continuous homomorphisms from G to S1 endowed with the
compact-open topology is itself a locally compact abelian group, and it is called the group of
characters or the (Pontryagin) dual of G (see [Pon66, Chapter 6]). We will denote it by G∧.
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Example 2.1. Consider Q/Z as a topological group with the discrete topology. We have

(Q/Z)∧ ∼= Ẑ. To see this, notice first that for every positive integer n there is a natural isomor-
phism

Hom

( 1
nZ
Z
,Q/Z

)
∼= Z/nZ

given by sending a homomorphism ϕ : 1
nZ/Z→ Q/Z to the unique d ∈ Z/nZ such that ϕ

(
1
n

)
=

d
n . Now we have

Hom(Q/Z, S1) = Hom(Q/Z,Q/Z) ∼=

∼= Hom

(
lim−→
n

1
nZ
Z
,Q/Z

)
∼=

∼= lim←−
n

Hom

( 1
nZ
Z
,Q/Z

)
∼=

∼= lim←−
n

Z/nZ.

The maps forming this last projective system are just the natural projections, since for n | m
the restriction of

ϕ : Z/mZ→ Q/Z
1

m
7→ d

m

to Z/nZ maps 1
n to d

n . So we get Hom(Q/Z, S1) ∼= Ẑ.

Remark 2.2. In Section 4 we will need a higher-dimensional analogue of Example 2.1. By the
previous example we easily deduce that, for r, s > 1, the group Hom((Q/Z)r, (Q/Z)s) can be

identified with Mats×r(Ẑ). This can be seen directly on the finite level as follows: let

ϕ :

( 1
nZ
Z

)r
→

( 1
nZ
Z

)s
(

1
n , 0, . . . , 0

)
7→

(
d11

n ,
d21

n , . . . ,
ds1
n

)(
0, 1

n , . . . , 0
)
7→

(
d12

n ,
d22

n , . . . ,
ds2
n

)
...

...(
0, 0, . . . , 1

n

)
7→

(
d1r

n , d2r

n , . . . , dsrn
)

be a group homomorphism. The matrix Dϕ = (dij) ∈ Mats×r(Z/nZ) completely describes the
homomorphism ϕ, and the map ϕ 7→ Dϕ is easily checked to be a group isomorphism between
Hom(( 1

nZ/Z)r, ( 1
nZ/Z)s) and Mats×r(Z/nZ). Passing to the limit in n we obtain a description

of the natural isomorphism Hom((Q/Z)r, (Q/Z)s) ∼= Mats×r(Ẑ).
Furthermore, if r = s the map ϕ 7→ Dϕ is a ring homomorphism from End((Q/Z)s) to

Mats×s(Ẑ). This allows us to identify Aut((Q/Z)s) = End((Q/Z)s)× with GLs(Ẑ).

Theorem 2.3 (Pontryagin duality, see [Pon66, Theorems 39 and 40]). The hom-functor
Hom(−, S1) that maps G to its dual G∧ is an anti-equivalence of the category of locally compact
Hausdorff topological abelian groups with itself. Moreover (G∧)∧ is naturally isomorphic to G.
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This anti-equivalence induces an inclusion-reversing bijection between the closed subgroups of
any locally compact topological abelian group G and those of G∧, given by

{closed subgroups of G} ↔ {closed subgroups of G∧}

U 7→ AnnU = {f ∈ G∧ | f(u) = 0∀u ∈ U}

{g ∈ G | f(g) = 0∀f ∈ V } = AnnV ← [ V

Moreover, G is discrete if and only if G∧ is compact, and G is discrete and torsion if and only
if G∧ is profinite.

2.2 Relative automorphism groups

In this section we establish some basic results on relative automorphism groups of abelian groups,
that is the groups containing those automorphisms that restrict to the identity on a given sub-
group.

If A is an abelian group and B,C are abelian groups containing A as a subgroup, then we
denote by HomA(B,C) the set of homomorphisms B → C that restrict to the identity on A.
Similarly we define the ring of endomorphisms EndA(B). We also denote by AutA(B) the group
of all automorphisms of B that restrict to the identity on A, that is the group of invertible
elements in the ring EndA(B). We call any element of AutA(B) an A-automorphism of B.

Lemma 2.4. Let M and N be abelian groups and let A and B be subgroups of M . If f : A→ N
and g : B → N are group homomorphisms such that f|A∩B = g|A∩B, then there exists a unique
map ϕ : A+B → N such that ϕ|A = f and ϕ|B = g.

Proof. This is just a rephrasing of the universal property of A+B as the pushout of A∩B ↪→ A
and A ∩B ↪→ B.

Definition 2.5. Let A ⊆ B ⊆ M be abelian groups. We say that B is A-normal in M if the
restriction to B of every element of AutA(M) is an automorphism of B.

If B′ ⊆ M is a subgroup not necessarily containing A, then we say that B′ is A-normal in
M if the following two conditions hold:

(1) The group B′ is (A ∩B′)-normal in A+B′ and

(2) The group A+B′ is A-normal in M .

Remark 2.6. The choice of the word normal in the above definition is in analogy with the case
of field extensions in Galois theory.

Remark 2.7. Let A ⊆ B ⊆ C ⊆ M be abelian groups. If C is A-normal in M , then C is also
B-normal in M . If B is A-normal in C and C is A-normal in M , then B is A-normal in M .

If A ⊆ B ⊆M are abelian groups, then B is A-normal in M if and only if the restriction map
AutA(M)→ HomA(B,M) factors via AutA(B). In this situation we call this map AutA(M)→
AutA(B) the natural restriction map.

Lemma 2.8. Let M be an abelian group and let A,B ⊆M be subgroups of M . Assume that B
is A-normal in A+B. Then the natural restriction map AutA∩B(A+B)→ AutA∩B(B) induces
an isomorphism

AutA(A+B) ∼= AutA∩B(B).
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Proof. The inclusion AutA(A + B) ↪→ AutA∩B(A + B) composed with the natural restriction
yields a group homomorphism ρ : AutA(A + B) → AutA∩B(B), which is injective because
ker ρ = AutA+B(A+B) = 1.

Let σ ∈ AutA∩B(B) and let σ̃ : A+B → A+B be the homomorphism obtained by applying
Lemma 2.4 to σ and idA. This map is clearly surjective, since every element of A and every
element of B are in its image. If σ̃(a+ b) = 0 for some a ∈ A and some b ∈ B, then σ(b) = −a ∈
A∩B, which implies that b ∈ A∩B and thus a+ b = 0. So σ̃ is injective, thus an automorphism.
We conclude that ρ is an isomorphism.

2.3 Projective limits of exact sequences

Remark 2.9. Let

1→ A→ G→ H → 1

be an exact sequence of groups, and assume that A is abelian. Then there is a natural left action
of H on A, defined as follows.

Let h ∈ H and consider any lift h̃ ∈ G of h. Then the action of h on a ∈ A is defined as

h̃ah̃−1

where we see a as an element of G via the inclusion map. This definition does not depend on the
choice of the lift h̃, because if ĥ is a different lift of h then ĥ = h̃b for some b ∈ A, and we have
ĥaĥ−1 = h̃bab−1h̃−1 = h̃ah̃−1. Moreover h̃ah̃−1 is mapped to 1 in H, so this clearly defines an
action of H on A.

Lemma 2.10. Let I be a partially ordered set. For every i ∈ I let Ai denote an exact sequence
of topological groups

1→ A′i → Ai → A′′i → 1

such that A′i and A′′i have the subspace and quotient topology with respect to Ai, respectively. For
every i 6 j let ρij : Aj → Ai be a map of exact sequences such that {(A)i∈I , (ρij)i,j∈I} is a
projective system. Let {A, (πi)i∈I} be the limit of this projective system, where A is

1→ A′ → A→ A′′ → 1 .

Then the subspace topology on A′ and the quotient topology on A′′ coincide with their respective
limit topology.

Proof. The limit topologies on A and A′ are the subspace topologies with respect to the products∏
i∈I Ai and

∏
i∈I A

′
i, respectively. Since each A′i has the subspace topology with respect to Ai,

it follows that
∏
i∈I A

′
i has the subspace topology with respect to

∏
i∈I Ai, so A′ has the subspace

topology with respect to A.
In order to show that the limit topology on A′′ is the quotient topology, we need to show that

every U ⊆ A′′ is open for the limit topology if and only if its preimage in A is open. If U ⊆ A′′

is open for the limit topology, there is V ⊆
∏
i∈I A

′′
i open such that V ∩ A′′ = U . Its preimage

W ⊆
∏
i∈I Ai is open and such that W ∩ A, which coincides with the preimage of U in A, is

open. On the other hand, if the preimage V ′ ⊆ A of U is open, there must be W ⊆
∏
i∈I Ai

open and such that W ∩ A = V ′. But then, since a quotient map between topological groups
is open and the product of surjective open maps is open, the projection V of W in

∏
i∈I A

′′
i is

open, and so is V ∩A′′, which coincides with U .
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3 The s-extensions of abelian groups

In this section we are going to revisit the theory of certain kinds of extensions of abelian groups
that were first introduced by Palenstijn in his master thesis [Pal04]. These extensions arise
naturally when considering the so-called division points of a certain subgroup A of the rational
points of a commutative algebraic group. In particular, the automorphism groups of these
extension provide a framework to study the Galois groups of field extensions generated by division
points.

3.1 General definitions and first results

Fix a positive integer s.

Definition 3.1. Let A be a finitely generated abelian group. An s-extension of A is an abelian
group B containing A such that:

(1) B/A is torsion;

(2) the torsion subgroup of B is isomorphic to a subgroup of (Q/Z)s.

Remark 3.2. A necessary (and sufficient) condition for a finitely generated abelian group A to
admit an s-extension is that the torsion subgroup Ators of A can be embedded in (Q/Z)s.

Definition 3.3. Let A be a finitely generated abelian group. For every s-extension B of A,
every a ∈ A and every positive integer n we call any b ∈ B such that nb = a an n-division point
of a (in B). We denote by

n−1
B a := {b ∈ B | nb = a}

the set of n-division points of a. We omit the subscript B from n−1
B if this is clear from the

context. We also denote by

Bn := {b ∈ B | nb ∈ A} =
⋃
a∈A

n−1
B a

the set of all n-division points of elements of A, which is again an s-extension of A. Notice that
for n | m we have Bn ⊆ Bm and that B =

⋃
n>1Bn.

Remark 3.4. Assume that n−1
B a is not empty. Then for any fixed b0 ∈ n−1

B a, the map

n−1
B a → B[n]

b 7→ b− b0

is a bijection.

The following lemmas will be used in what follows, in particular in Section 3.2.

Lemma 3.5. Let B and C be two s-extensions of a finitely generated abelian group A and let
ϕ : B → C be a group homomorphism that is the identity on A. For every a ∈ A and every
b ∈ n−1

B a we have ϕ(b) ∈ n−1
C a. In particular, we have ϕ(Bn) ⊆ Cn.

Proof. It is enough to notice that nϕ(b) = ϕ(nb) = ϕ(a) = a.
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Lemma 3.6. Let B and C be two s-extensions of a finitely generated abelian group A and let
ϕ : B → C be a group homomorphism that is the identity on A. The kernel of ϕ is contained in
Btors. Moreover, if for every prime ` the restriction of ϕ to B[`] is injective, then ϕ is injective.

Proof. Let b ∈ kerϕ and let n be a positive integer such that nb = a ∈ A. By Lemma 3.5 we
have 0 ∈ n−1

C a, which implies that a = 0. In particular, b is torsion. For the second assertion,
assume that b 6= 0 and let ` be a prime dividing the order of b. But then b has a multiple of
order ` which is in kerϕ, a contradiction.

Lemma 3.7. Let B be an s-extension of a finitely generated abelian group A and let ϕ : B → B
be an endomorphism that is the identity on A. If ϕ is injective, then it is an automorphism.

Proof. Assume first that ϕ is injective and let b ∈ B. Let n be a positive integer such that
nb = a ∈ A. By Lemma 3.5 we have ϕ(n−1a) ⊆ n−1a. Since n−1a is finite there must be some
b′ ∈ n−1a such that ϕ(b′) = b, hence ϕ is surjective.

The following proposition gives a criterion to verify if an s-extension is normal in the sense
of Definition 2.5.

Proposition 3.8. Let B be an s-extension of a finitely generated abelian group A and let C ⊆ B
be a subgroup. If HomA∩C(C,B) ⊆ HomA∩C(C,C), then C is A-normal in B.

Moreover, under the same assumptions, for every A ⊆ A′ ⊆ C ⊆ B′ ⊆ B we have that C is
A′-normal in B′.

Proof. First of all, notice that C is an s-extension of A ∩C and that A+C is an s-extension of
A. Let now σ ∈ AutA∩C(A+ C) and consider its restriction σC : C → A+ C. We then have

σC ∈ HomA∩C(C,A+ C) ⊆ HomA∩C(C,B) ⊆ HomA∩C(C,C).

Moreover σC is injective, thus an automorphism by Lemma 3.7. This shows that C is (A ∩ C)-
normal in A+ C.

To see that A + C is A-normal in B, let τ ∈ AutA(B) and consider its restriction τA+C :
A + C → B. Since τ is the identity on A and the image of its restriction to C is contained in
C by assumption, we have that the image of τA+C is contained in A + C. Since τ is injective,
by applying Lemma 3.7 we see that τA+C is an A-automorphism of A+ C, so we conclude that
A+ C is A-normal in B. Thus C is A-normal in B.

The second assertion follows from the first by noticing that HomA′∩C(C,B′) is contained in
HomA∩C(C,B).

Example 3.9. Let B be an s-extension of a finitely generated abelian group A. Proposition 3.8
can be applied in the following cases:

(1) Let C be either Btors or B[n] for some positive integer n. Then the image of every group ho-
momorphism from C toB is contained in C, so in particular HomA∩C(C,B) ⊆ HomA∩C(C,C).

(2) If C = Bn for some positive integer n, then by Lemma 3.5 we have HomA(Bn, B) ⊆
HomA(Bn, Bn) and hence

HomA∩Bn(Bn, B) ⊆ HomA∩Bn(Bn, Bn).
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3.2 Automorphisms of s-extensions

We now study the automorphisms of an s-extension that are the identity on the base group.
Recall that if B is an abelian group and A ⊆ B is a subgroup we denote by AutA(B) the group
of all automorphisms of B that restrict to the identity on A.

Fix for the remainder of this section a finitely generated abelian group A.
The following result is a generalization of [Pal14, Lemma 1.8], and the proof is essentially the

same. We include it here for the sake of completeness.

Proposition 3.10. Let B be an s-extension of A and let C ⊆ B be a subgroup. If C is A-normal
in B, the image of the restriction map AutA(B)→ HomA∩C(C,B) is AutA∩C(C).

Proof. By Lemma 2.8 we have AutA(A + C) ∼= AutA∩C(C) via the restriction map, so it is
enough to show that the restriction AutA(B) → AutA(A + C), which exists because A + C is
A-normal in B, is surjective. Thus we may assume that A ⊆ C.

In view of Lemma 3.7 it is enough to prove that every ϕ ∈ Aut(C) can be extended to an
injective homomorphism B → B. Consider the set of pairs (M,φ), where M is a subgroup of B
containing C and φ : M → B is an injective homomorphism extending ϕ, ordered by inclusion

(M,φ) ⊆ (M ′, φ′) ⇐⇒ M ⊆M ′ and φ′|M = φ.

By Zorn’s Lemma this ordered set admits a maximal element (B̃, ϕ̃) and we need to show that
B̃ = B. We prove this by contradiction, assuming that there exists x ∈ B \ B̃ and proving that
we can then extend ϕ̃ to an injective map 〈B̃, x〉 → B.

Assume first that the order of x is a prime number `. An element of B̃ mapping to B[`] must
be in B̃[`] because ϕ̃ is injective. Since x ∈ B[`] \ B̃[`] we have #B̃[`] < #B[`], so there must be
y ∈ B[`] \ {0} that is not in the image of ϕ̃. Using Lemma 2.4 we can then extend ϕ̃ to 〈B̃, x〉
by letting ϕ̃(x) := y. The map we obtain is still injective, so we may assume that B̃ contains all
elements of prime order of B.

Let now k be the smallest positive integer such that kx ∈ B̃. Up to replacing x with a suitable
multiple, we may assume that k = ` is a prime number. Let b = `x ∈ B̃. The fact that B[`] ⊆ B̃
implies that `−1

B b ⊆ B \ B̃.

Consider now ϕ̃(b) ∈ B and let y ∈ `−1
B ϕ̃(b). If y ∈ Im(ϕ̃), then there is z ∈ B̃ such that

ϕ̃(z) = y, thus ϕ̃(`z) = `y = ϕ̃(b) and so `z = b, a contradiction. Since B̃ ∩ 〈x〉 = 〈`x〉
and ϕ̃(`x) = `y, using again Lemma 2.4 we can extend ϕ̃ to 〈B̃, x〉 by letting ϕ̃(x) := y. By
Lemma 3.6, the homomorphism 〈B̃, x〉 → B that we obtain is still injective.

We conclude that B̃ = B, thus the restriction map AutA(B)→ AutA(C) is surjective.

Proposition 3.11. Let B be an s-extension of A. There is a canonical isomorphism

ϕ : AutA+Btors
(B) ∼= Hom(B/(A+Btors), Btors)

which sends any σ ∈ AutA+Btors
(B) to the group homomorphism [b] 7→ σ(b)− b.

Proof. Let σ ∈ AutA+Btors(B). By Lemma 3.5 we can define a map

ϕσ : B/(A+Btors)→ Btors

[b] 7→ σ(b)− b

which is clearly a group homomorphism. We claim that the map

ϕ : AutA+Btors(B)→ Hom(B/(A+Btors), Btors)

σ 7→ ϕσ
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is also a group homomorphism. To see this, let σ, τ ∈ AutA+Btors(B). Notice that, since τ(b)−b ∈
Btors for every b ∈ B, we have σ(τ(b)− b) = τ(b)− b. Then we have

ϕστ ([b]) = σ(τ(b))− b =

= σ(τ(b))− b+ τ(b)− b− σ(τ(b)− b) =

= τ(b)− b+ σ(b)− b =

= ϕσ([b]) + ϕτ ([b])

which proves our claim.
The homomorphism ϕ is injective, because if ϕσ = 0 then σ(b) = b for all b ∈ B. To see that

ϕ is surjective, for any ψ ∈ Hom(B/(A+Btors), Btors) let

σψ : B −→ B

b 7−→ b+ ψ([b])

which is clearly a group homomorphism that is the identity on A + Btors. It is also injective,
because if b+ψ([b]) = 0 then b = −ψ([b]) must be a torsion point, hence −b = ψ([b]) = ψ(0) = 0.
By Lemma 3.7, we have σψ ∈ AutA+Btors

(B) and clearly ϕσψ = ψ, so ϕ is surjective. We conclude
that ϕ is an isomorphism.

Combining the previous results, we obtain a fundamental exact sequence that provides our
framework for the study of Kummer extensions.

Proposition 3.12 ([Pal04, Corollary 3.12 and Corollary 3.18]). Let B be an s-extension of A.
There is an exact sequence

0→ Hom

(
B

A+Btors
, Btors

)
→ AutA(B)→ AutAtors

(Btors)→ 1 .

Moreover, the group AutAtors
(Btors) acts on Hom (B/(A+Btors), Btors) by composition.

Proof. Notice that Btors is A-normal in B by Example 3.9, so the restriction AutA(B) →
AutAtors

(Btors) is surjective by Proposition 3.10, and its kernel is AutA+Btors
(B). By Propo-

sition 3.11 we have
AutA+Btors(B) ∼= Hom(B/(A+Btors), Btors)

so we get the desired exact sequence.
It follows from the existence of the exact sequence above and by Remark 2.9 that the group

AutAtors
(Btors) acts naturally on Hom (B/(A+Btors), Btors). Let now ψ ∈ Hom (B/(A+Btors), Btors)

correspond to the automorphism σψ : b → b + ψ([b]) via the isomorphism of Proposition 3.11,
and let τ ∈ AutAtors

(Btors). Let moreover τ̃ be any lift of τ to AutA(B). Then for every b ∈ B
we have

(τ̃ ◦ σψ ◦ τ̃−1)(b) = τ̃
(
τ̃−1(b) + ψ([τ̃−1(b)])

)
=

= b+ τ̃
(
ψ([τ̃−1(b)])

)
and since τ̃−1 fixes A, as in the proof of Proposition 3.11 we have that τ̃−1(b) − b ∈ Btors. It
follows that ψ([τ̃−1(b)]) = ψ([b]), so

(τ̃ ◦ σψ ◦ τ̃−1)(b) = b+ τ̃(ψ([b])) = b+ (τ ◦ ψ)([b]),

where the last equality follows from the fact that ψ([b]) ∈ Btors. We conclude that the natural
action of AutAtors

(Btors) on Hom (B/(A+Btors), Btors) is given by composition.
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3.3 Profinite structure of automorphism groups

Fix for the remainder of this section a finitely generated abelian group A. For any s-extension
B of A and for any positive integer n we can consider the group Bn and its automorphism group
AutA(Bn) which, according to the following proposition, is finite.

Proposition 3.13. Let B be an s-extension of A and assume that B/A has finite exponent.
Then the automorphism group AutA(B) is finite.

Proof. In view of Proposition 3.12 it is enough to prove that Hom (B/(A+Btors), Btors) and
AutAtors

(Btors) are finite. But this follows from the fact that both Btors and B/(A + Btors) are
finite, since A is finitely generated, B/A has finite exponent and Btors embeds in (Q/Z)s.

Let B be an s-extension of A. By Proposition 3.12 for every positive n we have an exact
sequence

0→ Hom

(
Bn

A+Bn,tors
, Bn,tors

)
→ AutA(Bn)→ AutAtors

(Bn,tors)→ 1

and for every n | m the restriction maps make the following diagram commute:

0 Hom

(
Bm

A+Bm,tors
, Bm,tors

)
AutA(Bm) AutAtors

(Bm,tors) 1

0 Hom

(
Bn

A+Bn,tors
, Bn,tors

)
AutA(Bn) AutAtors

(Bn,tors) 1

Notice that the rows of this diagram are exact and that every vertical map is surjective by
Propostion 3.10. In fact, we have

• The map on the left is, once we apply Proposition 3.11, the restriction map

AutA+Bm,tors
(Bm)→ AutA+Bn,tors

(Bn)

and A + Bn,tors is A-normal in A + Bm,tors by Proposition 3.8 (notice that the image of
any A-homomorphism from A+Bn,tors to A+Bm,tors is contained in A+Bn,tors).

• The group Bn is A-normal in Bm by Example 3.9(2) and Proposition 3.8.

• The groups Bn,tors and Bm,tors are s-extensions of Ators, and Bn,tors is Ators-normal in
Bm,tors by Example 3.9(1) and Proposition 3.8.

Proposition 3.14. Let B be an s-extension of A. The groups AutA(Bn) together with the
natural restriction maps ρnm : AutA(Bm)→ AutA(Bn) for n | m form a projective system. The
group AutA(B) together with the natural restriction maps ρn : AutA(B)→ AutA(Bn) is the limit
of this projective system.

Proof. By Proposition 3.10 the restriction map ρm : AutA(B) → AutA(Bm) is surjective for
every m. Since for every n | m we have ρn = ρnm ◦ ρm, the map ρnm is surjective as well. These
maps are clearly compatible, so they form a projective system.

Let G be any group with a compatible system of maps ϕn : G → AutA(Bn). Then we can
define a map ϕ : G→ AutA(B) by letting for every g ∈ G and every b ∈ B

ϕ(g)(b) := ϕn(g)(b)
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where n is such that b ∈ Bn. It is easy to check that this map is well-defined and that it is the
unique map G→ AutA(B) compatible with the projections.

From the above proposition it follows that the projective limit of these exact sequences is the
same exact sequence of Proposition 3.12:

0→ Hom

(
B

A+Btors
, Btors

)
→ AutA(B)→ AutAtors

(Btors)→ 1 .

Since this sequence is a projective limit we can endow the groups involved with the natural
profinite topology by giving each finite group the discrete topology. The maps appearing in the
exact sequence above are then continuous and, in particular, Hom (B/(A+Btors), Btors) and
AutAtors(Btors) have the subspace and quotient topology, respectively (see Lemma 2.10). Notice
also that Hom (B/(A+Btors), Btors), being the kernel of a continuous homomorphism, is a closed
normal subgroup of AutA(B).

We have obtained the following refinement of Proposition 3.12.

Proposition 3.15. Let B be an s-extension of A. The group AutA(B) together with the natural
restriction maps is the projective limit of the finite groups AutA(Bn), thus it is a profinite group.
In particular, AutA(B) is a compact Hausdorff topological group.

There is an exact sequence of profinite groups

0→ Hom

(
B

A+Btors
, Btors

)
→ AutA(B)→ AutAtors(Btors)→ 1 .

Moreover, the group AutAtors
(Btors) acts on Hom (B/(A+Btors), Btors) by composition, and the

action is continuous.

3.4 Full s-extensions

In this section we give a characterization of the maximal s-extensions of [Pal04, Section 2.2].
We will not prove here the maximality of these extensions in the sense of [Pal04, Theorem 2.6],
hence the change of name to full s-extensions. Our motivation for the study of these kind
of extensions is that they provide a useful abstraction for the set of points of a commutative
algebraic group that have a multiple in a fixed subgroup of rational points, in other words it is
“full” of all division points. However, the equivalence of the two definitions follows immediately
from Proposition 3.19.

Definition 3.16. Let A be a finitely generated abelian group. An s-extension Γ of A is called
full if Γ is a divisible abelian group and Γtors

∼= (Q/Z)s.

Remark 3.17. Recall from Remark 3.2 that a necessary condition for A to admit any s-extension
is that Ators can be embedded in (Q/Z)s. This condition is also sufficient for A to admit a full
s-extension. To see this, fix an isomorphism A ∼= Zrk(A) ⊕ T , where T is a finite subgroup of
(Q/Z)s. Then the natural inclusion Zrk(A) ⊕ T ↪→ Qrk(A) ⊕ (Q/Z)s realizes Qrk(A) ⊕ (Q/Z)s as
a full s-extension of A.

Remark 3.18. Let Γ be a full s-extension of a finitely generated abelian group A. Then
Γtors

∼= (Q/Z)s is a divisible abelian group. It follows that the exact sequence

0→ Γtors → Γ→ Γ/Γtors → 0

splits (non-canonically), so that Γ ∼= (Γ/Γtors)⊕ Γtors
∼= (Γ/Γtors)⊕ (Q/Z)s.
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The following proposition shows in particular that a finitely generated abelian group A can
have at most one full s-extension, up to (a not necessarily unique) isomorphism.

Proposition 3.19. Let A be a finitely generated abelian group of rank r which admits a full
s-extension Γ. There is a canonical isomorphism

Γ/Γtors
∼→ A⊗Z Q (3.1)

that sends the subgroup A/Ators of Γ/Γtors to A := {a⊗ 1 | a ∈ A}.
Moreover, there is an isomorphism

Γ
∼→ Qr ⊕ (Q/Z)s (3.2)

that sends A to Zr ⊆ Qr.

Proof. Since Γ/A is torsion, for every b ∈ Γ there is an integer n > 1 such that nb ∈ A. Let
nb := min{n ∈ N>1 | nb ∈ A}. We define a map

ψ : Γ −→ A⊗Z Q

b 7−→ (nbb)⊗
1

nb
.

The map ψ is a group homomorphism. To see this, notice first that for every b ∈ Γ and every
n ∈ N>1 such that nb ∈ A we have (nb)⊗ 1

n = (nbb)⊗ 1
nb

. Then for every b, c ∈ Γ we have

ψ(b+ c) =nb+c(b+ c)⊗ 1

nb+c
= nbnc(b+ c)⊗ 1

nbnc
=

=(nbncb)⊗
1

nbnc
+ (nbncc)⊗

1

nbnc
=

=(nbb)⊗
1

nb
+ (ncc)⊗

1

nc
=

=ψ(b) + ψ(c).

The map ψ is also surjective: in fact, let a ∈ A and n ∈ N>1. Since Γ is divisible, there must be
an element b ∈ Γ such that nb = a, and thus ψ(b) = a⊗ 1

n .
Now we show that the kerψ = Γtors. If b ∈ Γ has order n > 1, then ψ(b) = (nb) ⊗ 1

n = 0,
showing that b ∈ kerψ. On the other hand, if ψ(b) = (nbb) ⊗ 1

nb
= 0, then necessarily nbb = 0,

so that b ∈ Γtors. So we get an isomorphism which sends A/Ators to A.
For the second part, since A has rank r we have A⊗Z Q ∼= Qr. It follows from the first part

that there is an isomorphism Γ/Γtors
∼→ Qr that sends A/Ators to Zr ⊆ Qr. The conclusion

follows by combining this with any isomorphism Γ
∼→ (Γ/Γtors)⊕ (Q/Z)s (see Remark 3.18).

Remark 3.20. In Proposition 3.19 the isomorphism (3.1) is canonical, while the isomorphism
(3.2) depends on the choice of three isomorphisms: an isomorphism between A⊗ZQ and Qr (or,
equivalently, a choice of a Z-basis of A/Ators), a splitting isomorphism Γ ∼= (Γ/Γtors)⊕Γtors (see
Remark 3.18) and an isomorphism Γtors

∼= (Q/Z)s.

3.5 Automorphisms of full s-extensions

For this section, let A be a finitely generated and torsion-free abelian group of rank r and let Γ
be a full s-extension of A. Notice that, since Ators = 0, we have AutAtors

(Γtors) = Aut(Γtors) and
Γn,tors = Γ[n] for every n > 0. By Proposition 3.19 we can fix an isomorphism

Φ : Γ
∼−→ Qr ⊕ (Q/Z)s
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that maps A onto Zr ⊆ Qr. This induces isomorphisms

Φkumm :
Γ

A+ Γtors

∼−→ (Q/Z)r,

Φtors : Γtors
∼−→ (Q/Z)s.

Recall from Remark 2.2 that we have canonical isomorphisms

Aut((Q/Z)s) ∼= GLs(Ẑ),

Hom((Q/Z)r, (Q/Z)s) ∼= Mats×r(Ẑ)

under which the action of Aut((Q/Z)s) on Hom((Q/Z)r, (Q/Z)s) given by composition becomes
matrix multiplication on the left. So we get isomorphisms

Φ∗kumm : Hom

(
Γ

A+ Γtors
,Γtors

)
∼−→ Mats×r(Ẑ),

Φ∗tors : Aut(Γtors)
∼−→ GLs(Ẑ).

On the finite level, these isomorphisms induce, for every n > 0, isomorphisms

ψn : Hom

(
Γn

A+ Γ[n]
,Γ[n]

)
∼−→ Mats×r (Z/nZ)

ϕn : Aut(Γ[n])
∼−→ GLs (Z/nZ)

which are compatible with the natural projections, in the sense that for every n | m the diagrams

Hom

(
Γm

A+ Γ[m]
,Γ[m]

)
Mats×r (Z/mZ)

Hom

(
Γn

A+ Γ[n]
,Γ[n]

)
Mats×r (Z/nZ)

ψm

ψn

and

Aut(Γ[m]) GLs(Z/mZ)

Aut(Γ[n]) GLs(Z/nZ)

ϕm

ϕn

commute. This shows that the topology with which we endowed our automorphism groups
coincides with the natural topology of the Ẑ-matrix rings, as stated in the following proposition.

Proposition 3.21. Let A be a finitely generated and torsion-free abelian group of rank r and let
Γ be a full s-extension of A. Consider the group AutA(Γ) with the profinite topology described

in Section 3.3 and the groups Mats×r(Ẑ) and GLs(Ẑ) with the topology induced by the profinite

topology of Ẑ.
Then every isomorphism of abelian groups

Φ : Γ
∼−→ Qr ⊕ (Q/Z)s
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that maps A onto Zr ⊆ Qr induces isomorphisms of topological groups

Φ∗kumm : Hom

(
Γ

A+ Γtors
,Γtors

)
∼−→ Mats×r(Ẑ),

Φ∗tors : Aut(Γtors)
∼−→ GLs(Ẑ) .

Moreover, the action of Aut(Γtors) on Hom (Γ/(A+ Γtors),Γtors) given by composition is identi-
fied under these isomorphisms with matrix multiplication on the left.

4 Some linear algebra

Motivated by the results of the previous sections we will now establish some results of linear
algebra over the ring Ẑ. In particular, we are interested in certain properties of Mats×r(Ẑ) as a

left Mats×s(Ẑ)-module.
Fix for this section two non-negative integers s and r.

Proposition 4.1. Let R := Mats×s(Ẑ) and view M := Mats×r(Ẑ) as a left R-module. Let
V ⊆ M be a left R-submodule. Assume that there is a positive integer n such that, viewing the
elements of V as maps (Q/Z)r → (Q/Z)s, we have⋂

f∈V

ker f ⊆ (Q/Z)
r

[n]. (4.1)

Then V ⊇ nM .

Proof. Let L denote the right R-module Ẑs of row vectors and let N denote the left R-module Ẑs
of column vectors. Notice that there is a natural R-module isomorphism, obtained by applying
⊗RM to the natural isomorphism N ⊗Ẑ L→ R:

N ⊗Ẑ L⊗RM → M

x⊗ y ⊗m 7→ x · y ·m

whose inverse is

ψ : M → N ⊗Ẑ L⊗RM
m 7→

∑s
i=1 ei ⊗ fi ⊗m

where {ei} and {fi} are the canonical bases for N and L respectively.

Consider now the abelian group ML := L⊗RM , which is isomorphic to Ẑr via

L⊗RM → Ẑr

y ⊗ v 7→ y · v

and its subgroup

VL = 〈y ⊗ v | y ∈ L, v ∈ V 〉.

Condition (4.1) implies that, seeing the elements of VL as maps (Q/Z)r → Q/Z, we have⋂
f∈VL ker f ⊆ (Q/Z)r[n]. Then by Pontryagin duality (Theorem 2.3) we have VL ⊇ nML.
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The image of V in N ⊗Ẑ L⊗RM under the isomorphism ψ is

ψ(V ) = 〈x⊗ y ⊗ v | x ∈ N, y ∈ L, v ∈ V 〉 = 〈x⊗ vL | x ∈ N, vL ∈ VL〉

and since

n(N ⊗Ẑ L⊗RM) = 〈n(x⊗ y ⊗ v) | x ∈ N, y ∈ L, v ∈M〉 =

= 〈x⊗ n(y ⊗ v) | x ∈ N, y ∈ L, v ∈M〉 =

= 〈x⊗ w | x ∈ N, w ∈ nML〉

we have

ψ(V ) ⊇ n(N ⊗Ẑ L⊗RM)

which is equivalent to V ⊇ nM .

Lemma 4.2. Let R be a compact topological ring and let M be a compact topological R-module.
Let T ⊆ R be a subring of R and let S denote the smallest closed subring of R containing T . If
V ⊆M is a closed T -submodule, then V is also an S-module.

Proof. Let v ∈ V and consider the continuous map

fv : R→M

x 7→ xv

Since S is the closure of T in R, we have

fv(S) = fv

(⋂
{C | C closed, T ⊆ C ⊆ R}

)
⊆
⋂
{fv(C) | C closed, T ⊆ C ⊆ R} .

For any closed subset D of M containing f(T ) we have that f−1(D) is closed and contains T
and f(f−1(D)) ⊆ D, so fv(S) is contained in the closure of f(T ).

Since V is a T -module, we have fv(T ) ⊆ V , and since V is closed we have fv(S) ⊆ V by
what we have just said. Since this holds for any v ∈ V , we conclude that V is an S-module.

The following proposition is essentially a generalization of [Chapter 1, Proposition 4.12(1)].

Proposition 4.3. Let R := Mats×s(Z`) and view M := Mats×r(Z`) as a left R-module. Let H
be a closed subgroup of GLs(Z`) and V ⊆ M a closed left H-submodule. Let W = R · V and
let S denote the closed Z`-subalgebra of R generated by H. Suppose that there are non-negative
integers n and m such that

(1) W ⊇ `nM and

(2) S ⊇ `mR.

Then we have V ⊇ `n+mM .

Proof. Let T denote the (not necessarily closed) Z`-subalgebra of R generated by H, so that S
is the closure of T . It is clear that V , being both a Z`-module and an H-module, is a T -module.
Since it is closed, V is also an S-module by Lemma 4.2 above.

Then we have V ⊇ S · V ⊇ `mR · V = `mW ⊇ `m · `nM .
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The following result is an adelic version of Proposition 4.3.

Proposition 4.4. Let R := Mats×s(Ẑ) and view M := Mats×r(Ẑ) as a left R-module. Let H be

a closed subgroup of GLs(Ẑ) and let V ⊆ M be a closed left H-submodule. Let W = R · V and,

for every prime `, let H` denote the image of H under the projection GLs(Ẑ) → GLs(Z`) and
let Z`[H`] denote the closed sub-Z`-algebra of Mats×s(Z`) generated by H`. Suppose that there
are positive integers n and m such that

(1) W ⊇ nM ;

(2) For every prime ` we have Z`[H`] ⊇ mMats×s(Z`).

Then we have V ⊇ nmM .

Proof. Let R` := Mats×s(Z`) and M` := Mats×r(Z`), so that

R =
∏
`

R` and M =
∏
`

M`.

Let moreover V` and W` denote the images of V and W in M`, respectively. Notice that V` is
an H`-submodule of M` and that W` is the R`-submodule of M` generated by V`.

By (1) we have that W` contains the image of nM in M`, which is nM`. By (2) we have
Z`[H`] ⊇ mMats×s(Z`), so we can apply Proposition 4.3 and deduce that V` ⊇ nmM`.

We claim that V =
∏
` V`, seen as a subgroup of

∏
`M`. Clearly V ⊆

∏
` V`, since every

v ∈ V is equal to the tuple (e`v)`, where e` ∈ Ẑ =
∏

Zp is the element whose `-component is
1 and whose p-component is 0 for all p 6= `. For the other inclusion, let (w`)` ∈

∏
` V`. Since

V` is the image of V under the natural projection, for every ` there must be w̃` ∈ V whose
`-component is w`. Then the infinite sum ∑

`

e`w̃`

converges to (w`)` in M : consider the sequence of partial sums

{xk}k∈N =

∑
`6k

e`w̃`


k∈N

and let U ⊆M be an open neighbourhood of (w`)`, which must be of the form∏
`6N

U` ×
∏
`>N

M`

for some integer N and some open neighbourhoods U` of w` in M`; then clearly xk ∈ U for all
k > N .

Since V is closed in M , we must then have (w`)` ∈ V , which shows that V =
∏
` V`.

Since for every prime ` the multiplication-by-` endomorphism on a Ẑ-module is invertible on
all prime-to-` components, we have

∏
` nmM` =

∏
` `
v`(nm)M` = nmM , so

V =
∏
`

V` ⊇
∏
`

nmM` = nmM

and we conclude.
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5 General entanglement theory

5.1 Initial remarks and definitions

Fix a number field K and an algebraic closure K of K. Let G be a commutative connected
algebraic group over K. It is well-known that there is a non-negative integer s, depending only
on G, such that G(K)[n] ∼= (Z/nZ)s for all integers n > 1. For example, if G is an abelian
variety of dimension g, we have s = 2g.

Let A ⊆ G(K) be a finitely generated and torsion-free subgroup of rank r and consider the
divisible hull of A in G(K)

Γ :=
{
P ∈ G(K) | ∃n ∈ N>1 : nP ∈ A

}
(5.1)

which is a subgroup of G(K) and a full s-extension of A.

We have Γtors = G(K)tors, which we will also denote by Gtors. We also have

A+G(K)tors ⊆ Γ ∩G(K).

The quotient group (Γ∩G(K))/(A+G(K)tors), being a quotient of a subgroup of Γ/A, is always
a torsion group.

Definition 5.1. We call any integer dA > 1 such that dA(Γ∩G(K)) ⊆ A+G(K)tors a divisibility
parameter for A in G(K). If such an integer exists, we say that A has finite divisibility in G(K).

Example 5.2. (1) If G(K) is finitely generated, every torsion-free subgroup A ⊆ G(K) has
finite divisibility in G(K): in fact, the abelian group (Γ ∩G(K))/(A + G(K)tors) is torsion
and finitely generated, so it is finite.

(2) Let G = Gm be the multiplicative group, so that s = 1. In this case G(K) = K× is
not finitely generated, but it still holds that every finitely generated A ⊆ G(K) has finite
divisibility. In order to prove this it is enough to show that for every prime number ` there
is a non-negative integer m` such that the `-power torsion of (Γ ∩G(K))/(A+G(K)tors) is
contained in

Γ ∩G(K)

A+G(K)tors
[`m` ]

and that we can take m` = 0 for all but finitely many primes `. The first part is just [DP16,
Lemma 12]. As for the second part, assume that A admits a strongly `-independent basis
a1, . . . , ar as in [PS19, Definition 2.1], which is true for all but finitely many ` by [PS19,
Theorem 2.7]. Let b ∈ Γ ∩K× be such that b`

m ∈ A · µ(K) for some m > 1. Then

b`
m

= ζ ·
r∏
i=1

axii

for some x1, . . . , xr ∈ Z and some root of unity ζ ∈ K of order a power of `. Since the ai
are strongly `-independent, every xi is divisible by `m. This means that b ∈ A · µ(K) =
A+G(K)tors, so we can take m` = 0.

Notice that the cited results are fully explicit, so a divisibility parameter for A is effectively
computable.
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(3) Let G = Ga be the additive group, so that s = 0. In this case no non-trivial subgroup
A ⊆ G(K) has finite divisibility. In fact we have

Γ =
{
b ∈ K | ∃n ∈ N>1 such that nb ∈ A

}
⊆ K.

Then (Γ∩G(K))/A = Γ/A contains elements of unbounded order. Since Γ ⊆ G(K), Kummer
theory for the additive group is trivial.

5.2 Torsion and Kummer representations and the entanglement group

Fix for the rest of the section a finitely generated subgroup A ⊆ G(K). For simplicity, we will
denote K(Gtors) by K∞. We are interested in studying the tower of extensions K(Γ) | K∞ | K.
Notice that K(Γ) is a Galois extension of K: in fact it is the union of its finite subextensions
of the form K(Γn), where Γn = {P ∈ G(K) | nP ∈ A}, which are Galois. Similarly, K∞ | K is
Galois, since it is the union of the finite Galois extensions Kn := K(G[n]) of K.

The action of Gal(K | K) on G(K) gives rise, for every n > 1, to injective homomorphisms

Gal(K(Γn) | Kn) ↪→ AutA+G[n](Γn) ∼= Hom

(
Γn

A+G[n]
, G[n]

)
,

Gal(K(Γn) | K) ↪→ AutA(Γn),

Gal(Kn | K) ↪→ Aut(G[n])

which by Proposition 3.15 fit into the commutative diagram with exact rows

1 Gal(K(Γn) | Kn) Gal(K(Γn) | K) Gal(Kn | K) 1

0 Hom

(
Γn

A+G[n]
, G[n]

)
AutA(Γn) Aut(G[n]) 1

Taking the projective limit we obtain the following commutative diagram of topological groups
with exact rows:

1 Gal(K(Γ) | K∞) Gal(K(Γ) | K) Gal(K∞ | K) 1

0 Hom

(
Γ

A+Gtors
, Gtors

)
AutA(Γ) Aut(Gtors) 1

and the Krull topology on the Galois groups coincides with the subspace topology with respect
to the automorphism groups.

Definition 5.3. We call the cokernel of the above defined map

Gal(K(Γ) | K∞) ↪→ Hom

(
Γ

A+Gtors
, Gtors

)
the entanglement group of A, and we denote it by Ent(A).
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Fixing an isomorphism as in Proposition 3.19

Φ : Γ
∼→ Qr ⊕ (Q/Z)s

that maps A to Zr ⊆ Qr, we get by Proposition 3.21 isomorphisms of topological groups

Φ∗kumm : Hom

(
Γ

A+ Γtors
,Γtors

)
∼−→ Mats×r(Ẑ),

Φ∗tors : Aut(Γtors)
∼−→ GLs(Ẑ).

Then we get a diagram with exact rows

1 Gal(K(Γ) | K∞) Gal(K(Γ) | K) Gal(K∞ | K) 1

0 Mats×r(Ẑ) AutZr (Qr ⊕ (Q/Z)s) GLs(Ẑ) 1

which we will refer to as the torsion-Kummer representation related to A. We will also call
the map

Gal(K(Γ) | K∞) ↪→ Mats×r(Ẑ)

the Kummer representation, and the map

Gal(K∞ | K) ↪→ GLs(Ẑ)

the torsion representation.

Definition 5.4. We will denote by H(G) the image of Gal(K∞ | K) in GLs(Ẑ) and by V (A)

the image of Gal(K(Γ) | K∞) in Mats×r(Ẑ).

Since all groups appearing in the diagram above are profinite and all the maps are continuous,
it follows that V (A) and H(G) are closed subgroups of Mats×r(Ẑ) and GL2(Ẑ), respectively. One
of our goals is proving that, under certain conditions, V (A) is also open. More precisely, we want

to bound the order of Ent(A) ∼= Mats×r(Ẑ)/V (A).

Remark 5.5. It follows from the existence of the Kummer representation that for any n > 1
the degree [K(n−1A) : K(G[n])] divides nrs.

Remark 5.6. The definition of entanglement group given here is different from that of [Pal14],
where the entanglement group for G = Gm is defined as the quotient of AutA(Γ) by the im-
age of Gal(K(Γ) | K), which in the cases considered there is a normal subgroup (see [Pal14,
Theorem 1.6]). In fact, the entanglement group defined here is a subgroup of that of [Pal14].

We conclude this section by remarking the following fact.

Lemma 5.7. Let G be a commutative connected algebraic group over a number field K and let
A ⊆ G(K) be a finitely generated, torsion-free subgroup of G(K) of rank r. If Ent(A) is finite,
then for every n > 1

nrs

[K (n−1A) : K (G[n])]
divides # Ent(A) .
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Proof. The image of V (A) under the natural quotient map Mats×r(Ẑ) → Mats×r(Z/nZ) is
Gal(K∞(n−1A) | K∞), so the ratio

nrs

[K∞ (n−1A) : K∞]

divides # Ent(A). In order to conclude it suffices to notice that

[K(n−1A) :K(G[n])] =

= [K(n−1A) : K∞ ∩K(n−1A)] · [K∞ ∩K(n−1A) : K(G[n])] =

= [K∞
(
n−1A

)
: K∞] · [K∞ ∩K(n−1A) : K(G[n])].

5.3 Bounding the entanglement group

We now give some sufficient conditions for the finiteness of the entanglement group Ent(A). In
particular, we want to explicitly bound its cardinality in terms of some known quantities. This
will be accomplished by applying the results of Section 4.

Assume for the rest of this section that A has finite divisibility and that dA is a divisibility
parameter for A in G(K). Consider the joint kernel of the elements of V (A), that is

S(A) :=
⋂

f∈V (A)

ker f ⊆ (Q/Z)r.

where we consider elements of Mats×r(Ẑ) as maps (Q/Z)r → (Q/Z)s. The image of any [b] ∈
Γ/(A + Gtors) in (Q/Z)r is in the kernel of every f ∈ V (A) if and only if b is fixed by every
automorphism σ ∈ Gal(K(Γ) | K∞), that is if and only if b ∈ G(K∞). So we have

S(A) = Φ

(
Γ ∩G(K∞)

A+Gtors

)
.

where we have denoted by Φ the isomorphism Γ/(A+ Γtors)
∼→ (Q/Z)r induced by Φ. Let

ϕ : Γ ∩G(K∞) −→ H1(Gal(K∞ | K), Gtors)

be the group homomorphism that maps an element b ∈ Γ ∩ G(K∞) to the class of the cocyle
ϕb : σ 7→ σ(b)− b. Notice that A+Gtors ⊆ kerϕ, because Gal(K∞ | K) acts trivially on A and
ϕt is a coboundary for every t ∈ Gtors. So ϕ gives rise to a map

S(A) −→ H1(Gal(K∞ | K), Gtors)

which we also denote by ϕ.

Proposition 5.8. The kernel of ϕ : S(A)→ H1(Gal(K∞ | K), Gtors) is contained in S(A)[dA].
In particular, if H1(Gal(K∞ | K), Gtors) has finite exponent n, then the exponent of S(A) divides
ndA.

Proof. Let b ∈ Γ ∩ G(K∞) and assume that ϕb is a coboundary. We want to show that dAb ∈
A + Gtors. Since ϕb is a coboundary, there is t0 ∈ Gtors such that for all σ ∈ Gal(K∞ | K) we
have σ(b)− b = σ(t0)− t0, hence σ(b− t0) = b− t0. This means that b− t0 ∈ Γ ∩G(K), hence
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dAb = dA(b− t0) + dAt0 ∈ dA(Γ ∩G(K)) + Gtors. Since dA is a divisibility parameter for A we
have

A+G(K)tors ⊇ dA(Γ ∩G(K))

so that

A+Gtors ⊇ dA(Γ ∩G(K)) +Gtors

and it follows that dAb ∈ A+Gtors, so we conclude.

We can finally prove the main theorem of this section. Recall that s is a non-negative integer
such that G[n] ∼= (Z/nZ)s for every n > 1 and that H(G) denotes the image of Gal(K∞ | K) in

GLs(Ẑ).

Theorem 5.9. Let G be a commutative connected algebraic group over a number field K and
let A ⊆ G(K) be a finitely generated and torsion-free subgroup of rank r. For every prime `,

let H`(G) denote the image of H(G) under the projection GLs(Ẑ) → GLs(Z`) and denote by
Z`[H`(G)] the closed sub-Z`-algebra of Mats×s(Z`) generated by H`(G). Assume that

(1) The group A admits a divisibility parameter dA in G(K).

(2) There is an integer n > 1 such that Z`[H`(G)] ⊇ nMats×s(Z`) for every prime `.

(3) There is an integer m > 1 such that the exponent of H1(Gal(K∞ | K), Gtors) divides m.

Then V (A) is open in Matr×s(Ẑ). More precisely, the order of Ent(A) divides (dAnm)rs.

Proof. Let Γ :=
{
P ∈ G(K) | ∃n ∈ N>1 : nP ∈ A

}
and fix an isomorphism Γ

∼→ Qr ⊕ (Q/Z)s

that sends A to Zr as in Proposition 3.19, so that we get a torsion-Kummer representation as in
the previous subsection.We can then identify H(G) with a subgroup of GLs(Ẑ) and V (A) with

a subgroup of Mats×r(Ẑ), and the natural action of H(G) on V (A) is identified with the usual
matrix multiplication on the left (see Proposition 3.21).

Thanks to conditions (1) and (3) we can apply Proposition 5.8 and deduce that

S(A) =
⋂

f∈V (A)

ker f ⊆ (Q/Z)r[dAm],

so that by Proposition 4.1 we have that the GLs(Ẑ)-submodule of Mats×r(Ẑ) generated by V (A)

contains dAmMats×r(Ẑ). This property and (2) allow us to apply Proposition 4.4 and deduce

that the index of V (A) in Mats×r(Ẑ) divides (dAnm)rs.

Remark 5.10. Let G = Gm and let A be a finitely generated and torsion-free subgroup of G(K)
of rank r. Theorem 5.9 gives us another way of proving [PS19, Theorem 1.1], which states that
there exists an integer C > 1 such that for every n > 1 the ratio

nr[
K
(
ζn,

n
√
A
)

: K (ζn)
] (5.2)

divides C. Indeed, the ratio (5.2) always divides # Ent(A) (Lemma 5.7), and we have:

(1) The group A has finite divisibility (see Example 5.2).
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(2) The torsion representation τ : Gal(K∞ | K) → GL1(Ẑ) = Ẑ× coincides with the adelic

cyclotomic character, whose image is open in Ẑ×; more precisely, the index of H(Gm) in Ẑ×
divides [K : Q], so that Z`[H`(Gm)] contains [K : Q] Mats×s(Z`) for every prime `.

(3) By (2) above H(Gm) contains every element of Z× that is congruent to the identity modulo
[K : Q]; an application of Sah’s Lemma (see also the proof of Proposition 6.3) tells us that

[K : Q]H1(Gal(K∞ | K),Gm,tors) = 0 .

So by Theorem 5.9 we may take C = (dA · [K : Q]2)r.

It is worth noting that the methods of [PS19] provide a more precise bound.

6 Elliptic curves

For this section we fix a number field K with algebraic closure K and an elliptic curve E over
K with EndK(E) = Z. Moreover, we let A be a torsion-free subgroup of E(K) of rank r and let
Γ ⊆ E(K) be the subgroup defined in (5.1), which is a full 2-extension of A.

Our goal is to apply Theorem 5.9 to get an explicit bound on the cardinality of Ent(A). In
order to do so, we need to study the divisibility parameter dA and the torsion representations
associated with E/K.

6.1 The divisibility parameter

If a set of generators for A, modulo torsion in E(K), is known in terms of a Z-basis for
E(K)/E(K)tors, then we can compute dA effectively. In fact, let E(K) = E(K)/E(K)tors and
let A be the image of A in E(K). Let e1, . . . , eρ be a basis for E(K) as a free Z-module and let
a1, . . . ,at be a set of generators for A. Write

ai =

ρ∑
j=1

mijej

for some integers mij , and let M be the ρ × t matrix (mji) whose columns are the coordinate
vectors representing the ai.

We can then reduce M to its Smith Normal Form (see [Jac12, Chapter 3]), that is, we can
find matrices P ∈ GLρ(Z) and Q ∈ GLt(Z) such that

PMQ =



d1 0 · · · · · · · · · · · · 0

0 d2

...
...

. . .
...

... dr
...

... 0
...

...
. . .

...

0 · · · · · · · · · · · · · · · 0


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where d1, . . . , dr are integers such that d1 | d2 | · · · | dr and r is the rank of A. The integers
di are uniquely determined up to sign, and they are easily computable from the minors of M
(see [Jac12, Theorem 3.9]).

It follows that there is a Z-basis {f1, . . . , fρ} of E(K) such that {d1f1, . . . , drfr} is a Z-basis
for A. Moreover, if Γ is defined as in (5.1), we have that (Γ ∩ E(K))/E(K)tors is generated by
{f1, . . . , fr}. We then have that dr(Γ ∩ E(K)) ⊆ A+ E(K)tors, so we can take dA = dr.

6.2 The torsion representation

The torsion representation is nothing but the usual Galois representation attached to the torsion
of E. After a choice of basis, we will denote it by

τ∞ : Gal(K∞ | K)→ GL2(Ẑ)

and we will denote its image by H(E). If ` is a prime we will denote by τ` the composition of

τ∞ with the natural projection GL2(Ẑ)→ GL2(Z`) and by H`(E) the image of τ`.

The non-CM case

Definition 6.1. We call adelic bound for the torsion representation a positive even integer mE

such that H(E) contains all the elements of GL2(Ẑ) congruent to the identity modulo mE . If
` is a prime, we call an integer n` > 1 such that H`(E) ⊇ I + `n` Mat2×2(Z`) a parameter of
maximal growth for the `-adic torsion representation. If ` = 2 we require n` > 2.

If E does not have complex multiplication over K, by Serre’s Open Image Theorem (see
[Ser72]) we know that an adelic bound exists.

Remark 6.2. Notice that, if an explicit bound for mE is known, one can easily give a bound for
each n` by just letting n` = max(1, v`(mE)). However, it is possible to give an effective bound
for each n` (see [LP21, Theorem 14 and Remark 15] and [Chapter 1, Remark 3.7]), so we will
keep these constants separate.

Proposition 6.3. If mE is an adelic bound for the torsion representation of E over K, then
mEH

1(Gal(K∞ | K), Etors) = 0.

Proof. Let G = Gal(K∞ | K) and let z = (z`)` ∈ Ẑ =
∏
` Z` be defined as

z` =

{
1 + `v`(mE) if ` | mE ,

2 if ` - mE .

Since by definition 2 | mE we have z ∈ Ẑ×. Moreover z − 1 = umE for some u ∈ Ẑ×.

Consider now the element g = zI ∈ GL2(Ẑ): it is congruent to the identity matrix modulo
mE , so it lies in G; moreover it is a scalar matrix, so it lies in the center of G. By Sah’s
Lemma (see [BR03, Lemma A.2]) the endomorphism of H1(G,Etors) defined by f 7→ (g − I)f

kills H1(G,Etors). Since g − I = umEI for u ∈ Ẑ×, we have that mEH
1(G,Etors) = 0, as

required.

Definition 6.4. Let K be a number field with absolute discriminant ∆K and let E be an elliptic
curve over K without CM over K. We denote by S(E) the finite set of primes ` that satisfy at
least one of the following conditions:

(1) ` | 2 · 3 · 5 ·∆K ;
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(2) the Galois group Gal(K` | K) is not isomorphic to GL2(F`).

(3) E has bad reduction at some prime of K of characteristic `.

Remark 6.5. The set S(E) is effectively computable (see [Chapter 1, Remark 5.2]).

An explicit value for the adelic bound mE is provided by the following result by F. Campagna
and P. Stevenhagen:

Theorem 6.6 ([CS19, Theorem 3.4]). Let E be an elliptic curve over K without CM over
K. Write K`∞ for the compositum of all `-power division fields of E over K, and KS(E) for
the compositum of the fields K`∞ with ` ∈ S(E). Then the family consisting of KS(E) and
{K`∞}` 6∈S(E) is linearly disjoint over K, that is, the natural map

Gal(K∞ | K)→ Gal(KS(E) | K)×
∏

` 6∈S(E)

Gal(K`∞ | K)

is an isomorphism.

Remark 6.7. For every prime ` 6∈ S(E), the `-adic representation associated with E is surjective.
This follows from the fact that the mod ` torsion representation associated with E and the `-
adic cyclotomic character of K are both surjective (since ` - ∆K): in fact in this case we have
(H(E) mod `) ⊇ SL2(Z/`Z) and det(H`(E)) = Z×` , which implies (see [Ser97, IV-23]) that
H`(E) = GL2(Z`).

Corollary 6.8. For every prime ` ∈ S(E) let n` be a parameter of maximal growth for the `-adic
torsion representation. Let moreover R :=

∏
`∈S(E) ` and m` = v` ([KR : K]). Then an adelic

bound for the torsion representation is given by

mE =
∏

`∈S(E)

`n`+m` .

Proof. We have to show that the image of Gal(K∞ | K) in GL2(Ẑ) contains∏
`∈S(E)

(
I + `m`+n` Mat2×2(Z`)

)
×

∏
` 6∈S(E)

GL2(Z`) .

We will do so by considering the subgroup Gal(K∞ | KR) of Gal(K∞ | K).
Notice that, since for every prime ` and every n > 1 the degree of K`n over K` is a power of

`, the family {K`∞R}`∈S(E) is linearly disjoint over KR. Then we have

Gal(K∞ | KR) = Gal(KS(E) | KR)×
∏

` 6∈S(E)

Gal(K`∞ | K) =

=
∏

`∈S(E)

Gal(K`∞R | KR)×
∏

` 6∈S(E)

Gal(K`∞ | K).

For every ` ∈ S(E) we have τ`(Gal(K`∞R | KR)) ⊇ I + `r` Mat2×2(Z`), where r` is a parameter
of maximal growth for the `-adic torsion representation attached to E over KR. By [Chapter 1,
Lemma 3.10] we can take r` 6 n+m`, so ρ∞(Gal(K∞ | KR)) contains∏

`∈S(E)

(
I + `n`+m` Mat2×2(Z`)

)
×

∏
` 6∈S(E)

GL2(Z`)

so it contains all elements that are congruent to I modulo mE , as required.



112 CHAPTER 3. RADICAL ENTANGLEMENT FOR ELLIPTIC CURVES

Remark 6.9. We can give an explicit bound for the integers m` of the above corollary:

m` = v` ([KR : K]) 6 v` (# GL2 (Z/RZ)) =
∑

p∈S(E)

v`
(
(p2 − 1)(p2 − p)

)
.

The CM case

The torsion representations associated with elliptic curves with complex multiplication have been
studied for example in [Deu53] and [Deu58]. They are deeply related to the endomorphism ring
OE = EndK(E) of E, which is an order in an imaginary quadratic number field F .

For every prime `, the group

C`(E) := (OE ⊗Z Z`)×

can be identified with a subgroup of GL2(Z`) via the action of OE on the `-power torsion of E,
and is called the Cartan subgroup of GL2(Z`) associated with E. We also let

C(E) :=
(
OE ⊗Z Ẑ

)×
=

∏
` prime

C`(E)

which can be identified with a subgroup of GL2(Ẑ), and we denote by N`(E) and N (E) the

normalizers of C`(E) in GL2(Z`) and of C(E) in GL2(Ẑ), respectively.
The group C`(E) is always conjugate to a subgroup of GL2(Z`) of the form

x δy

y x+ γy

 : x, y ∈ Z`, v`(x(x+ γy)− δy2) = 0


for some integers γ and δ, which are called parameters for C`(E) (see [LP17, §2.3]).

The image of the torsion representation associated with E is contained in N (E), and can be
described as follows.

Proposition 6.10 ([Lom17, Theorem 1.5]). Let E be an elliptic curve over K with CM over K,
and let F be the CM field of E. Let S denote the set of primes ` that either ramify in K · F or
are such that E has bad reduction at some prime of K of characteristic `. Then:

1. if F ⊆ K, then H(E) ⊆ C(E) and [C(E) : H(E)] divides 6[K : Q]. Moreover, H`(E) =
C`(E) for every ` 6∈ S;

2. if F 6⊆ K, then H(E) ⊆ N (E), but H(E) 6⊆ C(E), and [C(E) : C(E) ∩ H(E)] divides
12[K : Q]. Moreover, H`(E) = N`(E) for every ` 6∈ S.

Remark 6.11. The result mentioned above [Lom17, Theorem 1.5] states that [C(E) : H(E)] 6
3[K : Q] if F ⊆ K and [C(E) : C(E) ∩H(E)] 6 6[K : Q] if F 6⊆ K. However, one can check that
its proof also yields Proposition 6.10 as stated here.

Proposition 6.12. Let E be a CM elliptic curve over K and let eK = 12[K : Q]. Let moreover

mK := 4eK ·
∏
`

`eK ,

where the product runs over all odd primes ` such that (` − 1) divides eK . Then we have
mKH

1(Gal(K∞ | K), Etors) = 0.
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Proof. Let k2 = 3 and, for any odd prime `, let k` be an integer whose class modulo ` is a
generator of (Z/`Z)× and 1 < k` < `. Let then z = (keK` )` ∈ Ẑ, and let g = zI ∈ GL2(Ẑ) By
Proposition 6.10 we have (C(E))eK ⊆ H(E), so in particular g ∈ H(E). Applying Sah’s Lemma
as in Proposition 6.3 we see that g − I kills H1(Gal(K∞ | K), Etors). Since

v2 (3eK − 1) 6 2eK ,

v` (keK` − 1) 6 eK for all ` > 2 ,

v` (keK` − 1) = 0 for all ` such that (`− 1) - eK ,

we have that z− 1 = um for some u ∈ Ẑ× and some m which divides mK . As in Proposition 6.3
we conclude that the exponent of H1(Gal(K∞ | K), Etors) = 0 divides mK .

It follows from classical results (see also [LP21, Section 2]) that for every prime ` there is a
positive integer n` such that

#(H(E) mod `n+1)/#(H(E) mod `n) = `2 for all n > n` . (6.1)

Definition 6.13. We call a positive integer n` satisfying (6.1) a parameter of maximal growth
for the `-adic torsion representation. If ` = 2 we require n` > 2.

6.3 Main theorems

We can finally prove our main results, which are higher-rank generalizations of [Chapter 1,
Theorems 1.1 and 1.2].

Theorem 6.14. Let E be an elliptic curve over a number field K without complex multiplication
over K. Let A be a finitely generated and torsion-free subgroup of E(K) of rank r.

Let dA be a divisibility parameter for A. Let S(E) be the finite set of primes of Definition
6.4 and for every ` ∈ S(E) let n` be a parameter of maximal growth for the `-adic torsion
representation of E/K and

m` :=
∑

p∈S(E)

v`((p
2 − 1)(p2 − p)).

Then V (A) is open in Matr×2(Ẑ). More precisely, the order of Ent(A) dividesdA · ∏
`∈S(E)

`2n`+m`

2r

.

Proof. By Remark 6.7, the integer n :=
∏
`∈S(E) `

n` is such that Z` [H`(E)] contains nMat2×2(Z`)
for every prime number `. By Corollary 6.8 and Remark 6.9 the integer m :=

∏
`∈S(E) `

n`+m`

is an adelic bound for the torsion representation associated with E, so by Proposition 6.3 the
exponent of the group H1 (Gal(K∞ | K), Etors) divides m.

Then by Theorem 5.9 we have that the order of Ent(A) divides (dAnm)2r.

Definition 6.15. Let E be an elliptic curve over a number field K with CM over K. Let
OE = EndK(E) and let F = Frac(OE). We denote by S(E) the finite set of primes such that at
least one of the following conditions is satisfied:

1. ` divides the conductor of OE ;
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2. ` ramifies in K;

3. E has bad reduction at some prime of K of characteristic `.

Theorem 6.16. Let E be an elliptic curve over a number field K, with CM over K but not over
K. Let A be a finitely generated and torsion-free subgroup of E(K) of rank r.

Let dA be a divisibility parameter for A. For every prime ` let n` be a parameter of maximal
growth for the `-adic torsion representation of E/K and let (γ`, δ`) be parameters for C`(E). Let
mK be the integer defined in Proposition 6.12. Let moreover S(E) be the finite set of primes of
Definition 6.15.

Then V (A) is open in Matr×2(Ẑ). More precisely, the order of Ent(A) dividesdAmK ·
∏

`∈S(E)

`n`+v`(4δ`)

2r

,

where we let v`(0) = 0 for every prime `.

Proof. In order to apply Theorem 5.9 we only need to prove that:

1. for every prime ` 6∈ S(E) we have

Z`[H`(E)] = Mat2×2(Z`) ;

2. for every prime ` ∈ S(E) we have

Z`[H`(E)] ⊇ `n`+v`(4δ`) Mat2×2(Z`) .

Both parts follow from from [Chapter 1, Proposition 4.12, proof of (3)], noticing that for every
` 6∈ S(E) one may take d = 0 by [LP17, Proposition 10].

Theorem 6.17. There is a universal constant C > 1 such that, for every elliptic curve E/Q
and every torsion-free subgroup A of E(Q), the order of Ent(A) divides (dAC)2 rk(A).

Proof. By [Chapter 1, Corollary 3.13] (which relies on [Ara08, Theorem 1.2] for the non-CM
case) the parameters of maximal growth for the `-adic torsion representation associated with an
elliptic curve over Q can be bounded independently of E. By [Chapter 1, Theorem 1.3] there
is a constant C1 such that the exponent of H1(Gal(Q∞ | Q), Etors) divides C1. The conclusion
then follows from Theorem 5.9.

Remark 6.18. Theorem 6.16 does not hold if OE = EndK(E) 6= Z. In fact in this case one
may find a subgroup A ⊆ E(K) such that Ent(A) is infinite.

To see this, let P ∈ E(K) be a point of infinite order and let A = OEP and A′ = ZP . Since
A is a free OE-module of rank 1, it has rank 2 as an abelian group.

Let Q ∈ n−1P . For every n > 1 and every σ ∈ OE we have n−1σ(P ) = σ(Q) + E[n], so

n−1A = OEQ+ E[n].

Since Q ∈ n−1A′ and OE is defined over K we have that OEQ is defined over K(n−1A′). Since
moreover E[n] ⊆ n−1A′ we deduce that K(n−1A) ⊆ K(n−1A′). In fact, since A ⊇ A′, the two
fields coincide. So in particular[

K
(
n−1A

)
: K (E[n])

]
=
[
K
(
n−1A′

)
: K (E[n])

]
.
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Then for every n > 1 we have by Remark 5.5

n4

[K (n−1A) : K (E[n])]
=

n4

[K (n−1A′) : K (E[n])]
> n2

which, by Lemma 5.7, implies that Ent(A) is infinite.
Notice that two generators of A as a free Z-module cannot be linearly independent over O.

In fact, the condition that the points are linearly independent over the endomorphism ring of
the curve can also be found in [Rib79, Theorem 1.2].
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Chapter 4

Division in modules and Kummer
theory

by Sebastiano Tronto [Tro21]

1 Introduction

Let K be a number field and fix an algebraic closure K of K. If G is a connected commutative
algebraic group over K and A is a subgroup of G(K), we may consider for every positive integer n
the field extension K(n−1A) of K inside K generated by all points P ∈ G(K) such that nP ∈ A.
This is a Galois extension of K containing the n-torsion field K(G[n]) of G.

If G = Gm is the multiplicative group, extensions of this kind are studied by classical Kummer
theory. Explicit results for this case can be found for example in [PS19], [PST20b] and [PST20a].
The more general case of an extension of an abelian variety by a torus is treated in Ribet’s
foundational paper [Rib79]. Under certain assumptions, for example if G is the product of an
abelian variety and a torus and A is free of rank r with a basis of points that are linearly
independent over EndK(G), it is known that the ratio

nrs

[K (n−1A) : K(G[n])]
(1.1)

where s is the positive integer such that G(K)[n] ∼= (Z/nZ)s for all n > 1, is bounded indepen-
dently of n (see also [Ber88, Théorème 5.2] and [Hin88, Lemme 14]).

In the case of elliptic curves, one may hope to obtain an explicit version of this result.
Indeed the results of [Chapter 1] and [Chapter 3] provide such a statement under the assumption
that EndK(G) = Z, and they show that an effective bound depends only on the abelian group
structure of A and on the `-adic Galois representations associated with the torsion of G for every
prime `.

It is clear from the above discussion that the existence of non-trivial endomorphisms defined
over K plays an essential role in this theory. Without loss of generality we can take A to be
an EndK(G)-module, as done by Javan Peykar in his thesis [JP21]. This approach leads to

117
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an explicit “open image theorem” for Kummer extensions for CM elliptic curves, albeit under
certain technical assuptions on EndK(G).

Motivated by [JP21] and by the author’s previous results [Chapter 3], most of this paper is
devoted to developing a general abstract framework for the study of certain division modules of
a fixed R-module M , where R is any unitary ring. We strive to develop this theory in a way
that is independent from the “ambient module” G(K), taking inspiration from [Pal04] as well.

We introduce a natural generalization of the concept of injective modules, which to the
author’s knowledge is new. We also define a category of (J, T )-extensions, which shares many
interesting properties with the category of field extensions. We believe that these topics are
interesting in their own right.

At the end of the paper we prove the following result, which was previously known in this
effective form only under certain restrictions on EndK(E):

Theorem. Let E be an elliptic curve over a number field K, let R = EndK(E) and let M be
an R-submodule of E(K). There exists a positive integer c, depending only on the R-module
structure of M and on the image of the Galois representations associated with the torsion of E,
such that for every positive integer n

n2 rkR(M)

[K(n−1M) : K(E[n])]
divides c .

This result follows from Theorem 5.11, which is essentially an application of Theorem 5.4,
which in turn is a generalization of [Chapter 3, Theorem 5.9]. The results on Galois represen-
tations needed to apply this general theorem are mostly taken from [Chapter 1], and it can be
easily seen that the given bounds only depend on the `-adic representations, so that the constant
c of our main theorem is effectively computable.

1.1 Notation

In this paper, rings are assumed to be unitary, but not necessarily commutative; subrings always
contain the multiplicative unit 1. Unless otherwise specified, by ideal of a ring we mean a right
ideal and by module over a ring we mean a left module. If R is a ring and n is a positive integer,
we will denote by Matn×n(R) the ring of n× n matrices with coefficients in R.

We denote by Z the integers and by Z>0 the set of positive integers. If p is a prime number
we denote by Zp the completion of the ring Z at the ideal (p). We denote by Ẑ the product of
Zp over all primes p, which we identify with lim←−n∈Z>0

Z/nZ.

1.2 Structure of the paper

In Section 2 we introduce the concept of ideal filter and of division module by an ideal filter.
This provides us with a way to generalize the notion of injective module, and we are able to show
the equivalent of Baer’s criterion for injectivity and the existence of the analogue of injective
hulls in this setting. At the end of Section 2 we prove a certain duality result for J-injective
modules that will be applied in Section 5.

In Section 3 we construct the category of (J, T )-extensions, our abstraction for the modules of
division points of an algebraic group. This category behaves similarly to that of field extensions
of a given field. After studying an interesting pair of adjoint functors, we conclude this section
by proving the existence of a maximal (J, T )-extension, in analogy with field theory.

Section 4 is devoted to the study of automorphism groups of (J, T )-extensions. The fun-
damental exact sequence of Theorem 4.10 gives us a framework to study the Galois groups of
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Kummer extensions associated with a commutative algebraic group, provided that some techni-
cal assumptions hold. This is what we do in Section 5, and we conclude by applying these results
to elliptic curves.
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2 J-injectivity

2.1 Ideal filters and division in modules

In order to study division in modules over a general ring, we take inspiration from [JP21].
However, instead of using Steinitz ideals (that is, ideals of the completion of a ring), we use a
more general concept that we now introduce.

Definition 2.1. Let R be a ring. We call a non-empty set J of right ideals of R an ideal filter
if the following conditions hold:

1. If I, I ′ ∈ J then I ∩ I ′ ∈ J .

2. If I ∈ J and I ′ is a right ideal containing I, then I ′ ∈ J .

The minimal ideal filter is {R}, while the maximal ideal filter contains all ideals (equivalently,
it contains the zero ideal): we denote the former by 1 and the latter by 0.

For any ring R and any set S of right ideals of R we call the ideal filter generated by S the
smallest ideal filter containing S: it consists of all ideals of R which contain a finite intersection
of elements of S.

Example 2.2. We will be interested in the ideal filters generated by the powers of a given prime
number p

p∞ := {I right ideal of R | I ⊇ pnR for some n ∈ N}

and the one generated by all non-zero integers

∞ := {I right ideal of R | I ⊇ nR for some n ∈ Z>0} .

Notice that if pn = 0 (resp. n = 0) for some n ∈ Z>0 then p∞ (resp. ∞) is simply the maximal
ideal filter 0. We will often consider such ideal filters in the case where R is a commutative
integral domain of characteristic different from p (resp. characteristic 0).

Fix for the remainder of this section a ring R.

Definition 2.3. If M ⊆ N are left R-modules, for any right ideal I of R we call

(M :N I) := {x ∈ N | Ix ⊆M}

the I-division module of M in N .
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A similar concept for ideals of R is sometimes referred to as quotient ideal, but we deemed a
change of terminology appropriate.

We can easily generalize this notion to ideal filters of R.

Definition 2.4. Let J be an ideal filter of R and let M ⊆ N be left R-modules. We call

(M :N J) :=
⋃
I∈J

(M :N I)

the J-division module of M in N . One can easily check that (M :N J) is an R-submodule of N .
Moreover, we call N [J ] := (0 :N J) the J-torsion submodule of N . We call N a J-torsion

module if N = N [J ].

Remark 2.5. If J = 0 then (M :N J) = N and M [J ] = M . On the other hand, if J = 1 then
(M :N J) = M and M [J ] = 0.

Remark 2.6. Let M ⊆ N be left R-modules and let J and J ′ be ideal filters of R with J ′ ⊆ J .
If M ′ ⊆ M and N ′ ⊆ N are submodules with M ′ ⊆ N ′, then it is clear from the definition of
J-division module that (M ′ :N ′ J

′) ⊆ (M :N J).

Definition 2.7. We say that an ideal filter J of R is complete if for every left R-module N and
every submodule M ⊆ N we have

((M :N J) :N J) = (M :N J) .

We say that an ideal filter J is product-closed if for any I, I ′ ∈ J we have II ′ ∈ J .

Proposition 2.8. Let R be a ring and let J be a product-closed ideal filter of R. If for every
I ∈ J the left ideal RI is finitely generated, then J is complete. In particular, every product-closed
ideal filter over a left-Noetherian ring is complete.

Proof. Let J be a product-closed ideal filter of R and let M ⊆ N be left R-modules. The inclusion
(M :N J) ⊆ ((M :N J) :N J) is always true, so let us prove the other inclusion. Let x ∈ N be
such that there is I ∈ J with Ix ⊆ (M :N J). Let {y1, . . . yn} be a set of generators for the left
ideal RI. Then for every i = 1, . . . n there is Ii ∈ J such that Iiyix ⊆ M . By definition of ideal
filter we have I ′ :=

⋂n
i=1 Ii ∈ J and since J is product-closed we have I ′I ∈ J . Since {y1, . . . , yn}

is a set of generators of the left ideal RI and I ′ is a right ideal we have I ′Ix = I ′(RI)x ⊆ M ,
which shows that J is complete.

Example 2.9. The ideal filters introduced in Example 2.2 are both product-closed. If, for
example, R is Noetherian, then they are also complete.

We conclude this subsection with a list of properties of division modules.

Lemma 2.10. Let M ⊆ N ⊆ P and M ′ be left R-modules and let J and J ′ be ideal filters of R.
Then the following properties hold:

1. (M :N J) = (M :P J) ∩N .

2.
(
M :(M :NJ) J

)
= (M :N J).

3. (N/M)[J ] = (M :N J) /M .

4. (M :N J) = N if and only if N/M is J-torsion.
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5. (M ⊕M ′)[J ] = M [J ]⊕M ′[J ].

Proof.

1. The inclusion “⊆” is obvious; for the other inclusion it suffices to notice that if n ∈ N is
such that In ⊆M for some I ∈ J then by definition n ∈ (M :N J).

2. Follows directly from (1).

3. We have

(N/M)[J ] =
⋃
I∈J

(N/M)[I] =

=
⋃
I∈J
{n+M ∈ N/M | I(n+M) = M} =

=
⋃
I∈J
{n ∈ N | In ⊆M} /M =

=
⋃
I∈J

(M :N I) /M =

= (M :N J) /M .

4. By (3) we have that (N/M)[J ] = N/M if and only if (M :N J) = N .

5. For any right ideal I and any (m,m′) ∈M ⊕M ′ we have that I(m,m′) = 0 if and only if
Im = Im′ = 0. This implies that (M ⊕M ′)[I] = M [I]⊕M ′[I], so we have

(M ⊕M ′)[J ] =
⋃
I∈J

(M ⊕M ′)[I] =

=
⋃
I∈J

M [I]⊕M ′[I] =

= M [J ]⊕M ′[J ].

2.2 J-maps and J-extensions

Fix for this section a ring R and a complete ideal filter J of R. We introduce here some simple
notions that will lead us closer to our definition of (J, T )-extensions.

Definition 2.11. Let M be a left R-module. An R-module homomorphism ϕ : M → N is called
a J-map if (ϕ(M) :N J) = N . If ϕ is injective we will call it a J-extension, and we say that N
is a J-extension of M .

Remark 2.12. By Lemma 2.10(4) a homomorphism ϕ : M → N is a J-map if and only if
N/ϕ(M) is J-torsion. In particular, if J = 0, then every homomorphism of R-modules is a
J-map.

It is clear from the definition that, if ϕ : M → N and ψ : M → P are two J-maps, then any
R-module homomorphism f : N → P such that f ◦ ϕ = ψ is also a J-map.

The following lemma, which strongly relies on the assumption that J is complete, shows
moreover that R-modules and J-maps form a subcategory of the category of R-modules.
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Lemma 2.13. Let M,N and P be R-modules and let ϕ : M → N and ψ : N → P be R-module
homomorphisms. If ϕ and ψ are J-maps, then so is ψ ◦ ϕ.

Proof. Since J is complete we have

P = (ψ(N) :P J) =

=
((
ψϕ(M) :ψ(N) J

)
:P J

)
⊆

⊆ ((ψϕ(M) :P J) :P J) =

= (ψϕ(M) :P J)

hence (ψϕ(M) :P J) = P and ψ ◦ ϕ is a J-map.

Remark 2.14. Any homomorphism of R-modules ϕ : M → N such that N is J-torsion is a
J-map. In particular, the restriction of an R-module homomorphism to the J-torsion submodule
is a J-map.

The following lemma illustrates how certain properties of a J-map largely depend on its
restriction to the J-torsion submodule. Recall that an injective R-module homomorphism f :
M ↪→ N is called an essential extension if for every submodule N ′ ⊆ N we have N ′ ∩ f(M) =
0 =⇒ N ′ = 0.

Lemma 2.15. A J-map ϕ : M → N is essential if and only if ϕ|M [J] : M [J ]→ N [J ] is.

Proof. Notice that the statement is trivially true in case J = 0, so we may assume that J 6=
0. If ϕ is essential then clearly so is ϕ|M [J], because any submodule N ′ of N [J ] such that

N ′ ∩ ϕ(M [J ]) = 0 is in particular a submodule of N such that N ′ ∩ ϕ(M) = 0.
Assume than that ϕ|M [J] : M [J ]→ N [J ] is essential. Let N ′ ⊆ N be a non-trivial submodule

and let n ∈ N ′ be a non-zero element. If n ∈ N [J ] then N ′∩N [J ] is non-trivial, and since ϕ|M [J]

is essential then N ′ ∩ ϕ(M)[J ] is non-trivial as well. So we may assume that n 6∈ N [J ].
Since ϕ : M → N is a J-map, there is I ∈ J such that In ⊆ ϕ(M). In particular, since 0 6∈ J

and n is not J-torsion, there is r ∈ R such that 0 6= rn ∈ ϕ(M). Since N ′ is a submodule we
have rn ∈ N ′ ∩ ϕ(M), so ϕ : M → N is an essential extension.

Lemma 2.16. Let ϕ : M → N be a J-map and let f, g : N → P be R-module homomorphisms
such that f ◦ ϕ = g ◦ ϕ. Then for every n ∈ N we have that f(n)− g(n) ∈ P [J ].

Proof. The statement is clearly true for J = 0, so we may assume that J 6= 0. Since (ϕ(M) :N J) =
N there is I ∈ J such that In ⊆ ϕ(M). In particular there is a non-zero r ∈ I such that
rn ∈ ϕ(M), say rn = ϕ(m) for some m ∈M . This implies that

r(f(n)− g(n)) = f(ϕ(m))− g(ϕ(m)) = 0

thus f(n)− g(n) ∈ P [J ].

2.3 J-injective modules and J-hulls

Fix for this section a ring R and a complete ideal filter J of R. We introduce the notion of
J-injective module, which generalizes the classical notion of injectivity.

Definition 2.17. A left R-module Q is called J-injective if for every J-extension i : M ↪→ N
and every R-module homomorphism f : M → Q there exists a homomorphism g : N → Q such
that g ◦ i = f .
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Remark 2.18. Notice that in case J = 0 the definition of J-injective R-module coincides with
that of injective module. Moreover, if J ′ is a complete ideal filter of R such that J ′ ⊆ J , then a
J-injective module is also J ′-injective.

Example 2.19. A Z-module is p∞-injective if and only if it is p-divisible as an abelian group.
The proof of this fact is completely analogous to that of the well-known result that a Z-module
is injective if and only if it is divisible.

The following proposition is an analogue of the well-known Baer’s criterion in the classical
case of injective modules.

Proposition 2.20. A left R-module Q is J-injective if and only if for every two-sided ideal I ∈ J
and every R-module homomorphism f : I → Q there is an R-module homomorphism g : R→ Q
that extends f .

Proof. The “only if” part is trivial, because any two-sided ideal of R is also a left R-module and
I ↪→ R is a J-extension if I ∈ J . For the other implication, let i : M ↪→ N be a J-extension and
let f : M → Q be any R-module homomorphism. By Zorn’s Lemma there is a submodule N ′

of N and an extension g′ : N ′ → Q of f to N ′ that is maximal in the sense that it cannot be
extended to any larger submodule of N . If N ′ = N we are done, so assume that N ′ 6= N and let
x ∈ N \N ′.

Let I be the two-sided ideal of R generated by {r ∈ R | rx ∈ N ′}. Since i(M) ⊆ N ′ and
(i(M) :N J) = N there is I ′ ∈ J such that I ′x ⊆ N ′, which implies I ′ ⊆ I, so also I ∈ J . By
assumption the map I → Q that sends y ∈ I to g′(yx) extends to a map h : R → Q. Since
ker(R → Rx) is contained in ker(h), the map h gives rise to a map h′ : Rx → Q by sending
rx ∈ Rx to h(r). By definition the restrictions of g′ and h′ to N ′ ∩ Rx coincide, so we can
define a map g′′ : N ′ +Rx→ Q that extends both. This contradicts the maximality of g′, so we
conclude that N ′ = N .

Remark 2.21. Let R be an integral domain and let J be the ideal filter 0 on R. Since R is
an integral domain, the set of ideals J ′ = J \ {0} is an ideal filter. Using Proposition 2.20 one
can easily show that an R-module Q is J-injective if and only if it is J ′-injective. Indeed, one
implication holds, as remarked above, because J ⊆ J ′, and for the other it is enough to notice
that the unique map 0→ Q can always be extended to the zero map on R.

One advantage of using J ′ instead of J is that the J ′-torsion submodule may be different
from the whole module.

Example 2.22. Let M be an abelian group, let p be a prime and let J = p∞ be the ideal filter
of Z introduced in Example 2.2. Then the localization M [p−1] is a J-injective Z-module. Indeed,
if i : N ↪→ P is a J-extension and f : N → M [p−1] is any homomorphism then for every x ∈ P
there is k ∈ N such that pkx ∈ i(N), and one can define g(x) := f(pkx)

pk
. It is easy to check that

g is a well-defined group homomorphism such that g ◦ i = f .

Proposition 2.23. Let M be a J-injective R-module. If f : M ↪→ N is an essential J-extension,
then it is an isomorphism.

Proof. By definition of J-injectivity there is a map g : N → M such that g ◦ f = idM . Then g
is surjective and since f is an essential extension g is also injective, so it is an isomorphism.

Recall that an injective hull of an R-module M is an essential extension i : M ↪→ N such that
N is injective as an R-module. It is well-known that every R-module M admits an injective hull
and that any two injective hulls i : M ↪→ Ω and j : M ↪→ Γ are isomorphic via a (not necessarily
unique) isomorphism that commutes with i and j, see [Bae40], [ES53] or [Fle68].
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Lemma 2.24. Let R be a ring and let M be a left R-module. If i : M ↪→ Ω is an injective
hull and j : M ↪→ N is an essential extension, there is an injective R-module homomorphism
ϕ : N ↪→ Ω such that ϕ ◦ j = i. Moreover, ϕ : N ↪→ Ω is an injective hull.

Proof. Since Ω is injective there exists an R-module homomorphism ϕ : N → Ω such that
ϕ ◦ j = i. Since i is injective and j is an essential extension, then also ϕ is injective.

The last part follows from the fact that Ω is injective and ϕ : N ↪→ Ω is an essential extension,
since i : M ↪→ Ω is.

We conclude this section by proving that every R-module admits a J-hull, which is the
generalization of an injective hull:

Definition 2.25. Let M be a left R-module. A J-extension ι : M ↪→ Ω is called a J-hull of M
if it is an essential extension and Ω is J-injective.

Remark 2.26. If J = 0 the definition of J-hull coincides with that of injective hull.

Remark 2.27. If fi : Mi ↪→ Ni, for i = 1, . . . , k, are J-hulls, then the finite sum

⊕ifi :

k⊕
i=1

Mi ↪→
k⊕
i=1

Ni

is a J-hull. Indeed
⊕

iNi is J-injective because it is a finite direct sum of J-injective modules,
and it is easy to see that it is also an essential J-extension of

⊕
iMi.

Lemma 2.28. Let Q be a J-injective R-module and let P ⊆ Q be any submodule. Then (P :Q J)
is J-injective.

Proof. Let i : M ↪→ N be a J-extension and let f : M → (P :Q J) be any R-module homo-
morphism. Denote by j : (P :Q J) ↪→ Q the inclusion. Since Q is J-injective, there is a map
g : N → Q such that g ◦ i = j ◦ f . For every x ∈ N there is some I ∈ J such that Ix ⊆ i(M)
and thus Ig(x) = g(Ix) ⊆ g(i(M)) = j(f(M)), which means that the image of g is contained in
(P :Q J). This shows that (P :Q J) is J-injective.

Theorem 2.29. Every left R-module M admits a J-hull. Moreover, the following holds for any
J-hull ι : M ↪→ Ω of M :

1. For every J-extension i : M ↪→ N there is a J-hull j : N ↪→ Ω with j ◦ i = ι.

2. For every J-hull ι′ : M ↪→ Ω′ there is an isomorphism ϕ : Ω
∼→ Ω′ with ϕ ◦ ι = ι′.

Proof. Let ι : M ↪→ Γ be an injective hull of M and let Ω := (ι(M) :Γ J). Since ι : M ↪→ Γ is
an essential extension then also ι : M ↪→ Ω is, and by Lemma 2.10(2) we have (ι(M) :Ω J) = Ω,
so ι : M ↪→ Ω is a J-extension of M . By Lemma 2.28 the R-module Ω is J-injective, so it is a
J-hull of M .

For (1), since Ω is J-injective there is a map j : N → Ω such that j ◦ i = ι. Moreover since
ι : M ↪→ Ω is an essential extension also j : N ↪→ Ω is, so it is a J-hull.

For (2), let ι : M ↪→ Ω and ι′ : M ↪→ Ω′ be two J-hulls. Since Ω′ is J-injective there is an
R-module homomorphism f : Ω→ Ω′ such that f ◦ ι = ι′, so since ι is an essential extension f is
injective. But then, since idΩ : Ω ↪→ Ω is a J-hull by (1), there is an R-module homomorphism
g : Ω′ → Ω such that g ◦ f = idΩ, so in particular g is surjective. But we also have g ◦ ι′ = ι, and
since ι′ is an essential extension then g must be injective too, hence it is an isomorphism.



2. J-INJECTIVITY 125

Example 2.30. Let M be a finitely generated abelian group, let p be a prime number and let
J = p∞ be the ideal filter of Z introduced in Example 2.2. Write M as

M = Zr ⊕
k⊕
i=1

Z/peiZ⊕M [n]

where n is a positive integer coprime to p and the ei’s are suitable exponents. Let

Γ = (Z[p−1])r ⊕ (Z[p−1]/Z)k ⊕M [n]

and

ι : M → Γ

(z, (si mod pei)i, t) 7→
(
z
1 ,
(

s
pei mod Z

)
i
, t
)

Then ι : M → Γ is a J-hull. To see this it is enough to show that f : Zr ↪→ (Z[p−1])r and
gi : Z/peiZ ↪→ Z[p−1]/Z for every i = 1, . . . , k are J-hulls, and that M [n] is J-injective, being
trivially an essential extension of itself. The assertions about f and M [n] follow from Example
2.22, noticing that multiplication by p is an automorphism of M [n] and that Zr ↪→ (Z[p−1])r is
an essential J-extension.

So we are left to show that for every positive integer e the map g : Z/peZ ↪→ Z[p−1]/Z defined
by (s mod pe) 7→ ( spe mod Z) is a J-hull. It is a J-extension, because the Prüfer group Z[p−1]/Z
itself is J-torsion, and it is also essential because every subgroup of Z[p−1]/Z is of the form 1

pd
Z,

so it intersects the image of g in 1
pmin(e,d)Z.

Finally, Z[p−1]/Z is divisible as an abelian group, so in particular it is J-injective, since in
this case it is equivalent to being p-divisible.

2.4 Duality

Fix again a ring R and a complete ideal filter J of R. Fix as well a left R-module M and a
J-injective and J-torsion left R-module T and let E = EndR(T ).

In this section we prove an elementary duality result that will be key to the proof of our main
Kummer-theoretic results (Theorem 5.3).

Definition 2.31. If V is a subset of HomR(M,T ) we denote by ker(V ) the submodule of M
given by

ker(V ) :=
⋂
f∈V

ker(f)

and we call it the joint kernel of V .

If M ′ is a submodule of M we will identify HomR(M/M ′, T ) with the submodule
{f ∈ HomR(M,T ) | ker(f) ⊇M ′} of HomR(M,T ).

Proposition 2.32. If V is a finitely generated E-submodule of HomR(M,T ) we have V =
HomR(M/ ker(V ), T ).

Proof. Notice that the inclusion V ⊆ HomR(M/ ker(V ), T ) is obvious. For the other inclusion
we want to show that every homomorphism g : M → T with ker(g) ⊇ ker(V ) belongs to V .
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Let then g be such a map and let g : M/ ker(V ) → T be its factorization through the quotient
M/ ker(V ). Let {f1, . . . , fn} be a set of generators for V as an E-module and let

ε : M → Tn

x 7→ (f1(x), . . . , fn(x))

We have ker(ε) = ker(V ), so that ε factors as an injective map ε : M/ ker(V ) → Tn. Since T
is J-torsion, so is Tn, hence ε is a J-extension. Since T is J-injective there is an R-linear map
λ : Tn → T such that λ ◦ ε = g, or equivalently λ ◦ ε = g.

T

M M/ ker(V )

Tn
ε

g

g

ε

λ

Since HomR(Tn, T ) ∼=
⊕n

i=1 EndR(T ), there are elements e1, . . . , en ∈ EndR(T ) such that
λ(t1, . . . , tn) = e1(t1) + · · ·+ en(tn) for every (t1, . . . , tn) ∈ Tn. Then for x ∈M we get

λ(ε(x)) = λ(f1(x), . . . , fn(x))

= e1(f1(x)) + · · ·+ en(fn(x))

which means that g = e1 ◦ f1 + · · ·+ en ◦ fn ∈ V because V is an E-module.

Remark 2.33. Proposition 2.32 is a generalization of the following fact from linear algebra:
let V be a finite-dimensional vector space over a field K and let f1, . . . , fn : V → K be linear
functions. If f : V → K is a linear function such that ker(f) ⊇

⋂n
i=1 ker(fi), then f is a linear

combination of f1, . . . , fn.

Definition 2.34. Let N and Q be left R-modules. We say that Q is a cogenerator for N if
ker(HomR(N,Q)) = 0.

Theorem 2.35. Let R be a ring and let J be a complete ideal filter on R. Let T be a J-injective
and J-torsion left R-module and let M be any left R-module. Assume that T is a cogenerator
for every quotient of M and that HomR(M,T ) is Noetherian as an EndR(T )-module. The maps

{R-submodules of M} → {EndR(T )-submodules of HomR(M,T )}
M ′ 7→ HomR(M/M ′, T )

ker(V ) ← [ V

define an inclusion-reversing bijection between the set of R-submodules of M and that of EndR(T )-
submodules of HomR(M,T ).

Proof. Notice first the above maps are well-defined and they are both inclusion-reversing. Since
HomR(M,T ) is Noetherian as an EndR(T )-module, every submodule is finitely generated, so we
may apply Proposition 2.32. Since T is a cogenerator for every quotient of M we can conclude
that the two given maps are inverse of each other.
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Example 2.36. Let R = Z, let J = ∞ and let T = (Q/Z)s for some positive integer s. Let
M be a finitely generated abelian group. Notice that T is J-torsion and, since it is injective,
it is in particular J-injective. Since Q/Z is a cogenerator for every abelian group, so is T . We

have EndR(T ) = Mats×s(Ẑ) and since M is finitely generated HomR(M,T ) is Noetherian over

Mats×s(Ẑ). We are then in the setting of Theorem 2.35.

3 The category of (J, T )-extensions

Fix for this section a ring R, a complete ideal filter J of R and a J-torsion and J-injective left
R-module T .

In this section we introduce (J, T )-extensions, which are essentially J-exten-sions whose J-
torsion is contained in an R-module T as above (see Definition 3.12). These extensions of
R-modules share many interesting properties with field extensions, and in fact at the end of this
section we will be able to prove the existence of a “maximal” (J, T )-extension, analogous to an
algebraic closure in field theory.

3.1 T -pointed R-modules

In order to define (J, T )-extensions we first introduce the more fundamental concept of T -pointed
R-module.

Definition 3.1. A T -pointed R-module is a pair (M, s), where M is a left R-module and s :
M [J ] ↪→ T is an injective homomorphism.

If (L, r) and (M, s) are two T -pointed R-modules, we call an R-module homomorphism
ϕ : L→M a homomorphism or map of T -pointed R-modules if s ◦ ϕ|L[J] = r.

In the following we will sometimes omit the map s from the notation and simply refer to the
T -pointed R-module M .

Remark 3.2. A map ϕ : (L, r) → (M, s) of T -pointed R-modules is injective on L[J ]. Indeed
s ◦ ϕ|L[J] = r is injective, so ϕ|L[J] must be injective as well.

Definition 3.3. If (M, s) is a T -pointed R-module we denote the T -pointed R-module (M [J ], s)
by tor(M, s), or simply by tor(M). We will denote the natural inclusion tor(M) ↪→M by tM .

Example 3.4. Let R = Z and let J be the complete ideal filter∞ on Z. Let T = (Q/Z)2, which
is ∞-injective and ∞-torsion. The abelian group M = Z⊕Z/6Z⊕Z/2Z together with the map
s : Z/6Z⊕ Z/2Z that sends (1, 0) to

(
1
6 , 0
)

and (0, 1) to
(
0, 1

2

)
is a T -pointed R-module.

As is the case with field extensions, pushouts do not always exist in our newly-defined cate-
gory. However the pushout of two maps of T -pointed R-modules exists if at least one of the two
is injective and “as little a J-map as possible”.

Definition 3.5. We say that a map f : L→M of T -pointed R-modules is pure if (f(L) :M J) =
f(L) +M [J ].

Proposition 3.6. Let (L, r), (M, s) and (N, t) be T -pointed R-modules and let f : L→M and
g : L → N be maps of T -pointed R-modules. Assume that f is injective and pure. Then the

pushout M P Ni j
of f along g exists in the category of T -pointed R-modules.

Moreover the pushout map j : N → P is injective, and if g is injective the pushout map
i : M → P is injective.
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Proof. We have to show that there is a T -pointed R-module (P, u) with maps i : M → P and
j : N → P such that the diagram

L M

N P

g

f

i

j

commutes and such that for every T -pointed R-module (Q, v) with maps k : M → Q and
l : N → Q with k ◦ f = l ◦ g there is a unique map ϕ : L→ Q such that the diagram

L M

N P

Q

g

f

i
k

j

l

ϕ

commutes.
Let P ′ be the pushout of f along g as maps of R-modules, and let i′ : M → P ′ and j′ : N → P ′

be the pushout maps. Write P ′ as (M⊕N)/S where S = {(f(λ),−g(λ)) | λ ∈ L}. Let π : P ′ → P
be the quotient by the submodule

K := 〈{[(m,−n)] | for all m ∈M [J ], n ∈ N [J ] such that s(m) = t(n)}〉

and let i = π ◦ i′ and j = π ◦ j′. Notice that i ◦ f = j ◦ g.
We claim that P ′[J ] is generated by i′(M [J ]) and j′(N [J ]). The claim is obviously true if

J = 0, so we may assume that J 6= 0. To prove the claim, notice that by Lemma 2.10(3) we
have P ′[J ] = (S :M⊕N J) /S, so any element of P ′[J ] is represented by a pair (m,n) such that
I(m,n) ⊆ S for some I ∈ J . Then since f is a pure map we have m = f(λ) + tm for some λ ∈ L
and some tm ∈M [J ].

Let I ′ ∈ J be such that I ′tm = 0. Then I ∩ I ′ ∈ J and for any nonzero h ∈ I ∩ I ′ we
have (f(hλ), hn) = h(m − tm, n) = h(m,n) ∈ S, which means that hn = −g(hλ + z) for some
z ∈ ker(f). Since f is injective we have that n = −g(λ) + tn for some tn ∈ N [J ]. It follows that
the class of (m,n) in P ′[J ] is the same as that of (tm, tn), which proves our claim.

Since K ⊆ P ′[J ], it follows easily from our claim that P [J ] = P ′[J ]/K and thus that the map

u : P [J ]→ T

[(m,n)] 7→ s(m) + t(n)

is well-defined and injective. This shows that (P, u) is a T -pointed R-module and that i : M → P
and j : N → P are maps of T -pointed R-modules.

Let now (Q, v), k and l be as above. By the universal property of the pushout there is a
unique R-module homomorphism ϕ′ : P ′ → Q such that ϕ′ ◦ i′ = k and ϕ′ ◦ j′ = l. Since k is
a map of T -pointed R-modules, this implies that v ◦ ϕ′ ◦ i′ = s and v ◦ ϕ′ ◦ j′ = t, so that ϕ′

factors through P as a T -pointed R-module homomorphism ϕ : P → Q.
For the last assertion we first notice that if g is injective, then so is the R-module pushout map

i′. Then we claim that i′(M) ∩K = 0. Indeed if [(m0, 0)] = [(m,−n)] in P ′ for some m0 ∈ m,
m ∈M [J ] and n ∈ N [J ] such that s(m) = t(n), then there is some λ ∈ L such that m−m0 = f(λ)
and n = g(λ). Since g is injective λ is J-torsion, and we have r(λ) = s(m)− s(m0) = t(n). But,
since s(m) = t(n), we must have m0 = 0, and we conclude that i′(M) ∩K = 0. It follows that
i = π ◦ i′ is injective. Analogously, injectivity of f implies that of j.
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Remark 3.7. Let R = Z, J = 2∞, T = Z
[

1
2

]
/Z, L = Z and M = N = 1

2Z. The R-modules L,
M and N are T -pointed via the zero map, since their J-torsion is trivial. Let f : L ↪→ M and
g : L ↪→ N be the natural inclusion and notice that they are maps of T -pointed R-modules that
are not pure. We claim that the pushout of f along g does not exist in the category of T -pointed
R-modules.

Suppose instead that (P, u) is a pushout of f along g and consider the T -pointed R-module(
1
2Z⊕ Z/2Z, z

)
, where z : Z/2Z→ T is the only possible injective map. Consider the diagram

L M

N P

1
2Z⊕

Z
2Z

g

f

i k

j

l

ϕ

where the maps k and l are defined as

k : 1
2Z → 1

2Z⊕
Z
2Z l : 1

2Z → 1
2Z⊕

Z
2Z

and

1
2 7→

(
1
2 , 0
)

1
2 7→

(
1
2 , 1
)

Notice that k and l are maps of T -pointed R-modules such that k◦f = l◦g. Then by assumption
there exists a unique map of T -pointed R-modules ϕ : P → 1

2Z⊕ Z/2Z that makes the diagram
commute. In particular we have ϕ(j( 1

2 )) 6= ϕ(i( 1
2 )), which implies that j( 1

2 ) 6= i( 1
2 ). But since

2j( 1
2 ) = j(g(1)) = i(f(1)) = i( 1

2 ) we have that t := j( 1
2 )− i( 1

2 ) is a 2-torsion element of P , and
we must have u(t) = 1

2 .
Consider now the map k′ : M → 1

2Z⊕Z/2Z mapping 1
2 to

(
1
2 , 0
)
, just as l does. This is again

a map of T -pointed R-modules such that k′ ◦ f = l ◦ g, so there must be a map of T -pointed
R-modules ϕ′ : P → 1

2Z ⊕ Z/2Z that makes this new diagram commute. Such a map ϕ′ must
map t to 0, because ϕ′(j( 1

2 )) =
(

1
2 , 0
)

= ϕ′(i( 1
2 )). But then the diagram of structural maps into

T

P [J ]

T

Z
2Z

u

ϕ′|
P [J]

z

would not commute, which is a contradiction. This proves our claim.

The class of T -pointed R-modules whose torsion submodule is isomorphic to T will be par-
ticularly important for us.

Definition 3.8. Let (M, s) be a T -pointed R-module. We say that (M, s) is saturated if tM :
M [J ] ↪→ T is surjective (and hence an isomorphism).

Remark 3.9. The map tM is a pure and injective map.
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Every T -pointed R-module can be embedded in a saturated module, and the smallest satu-
rated module containing a given one can be constructed as a pushout.

Definition 3.10. If (M, s) is a T -pointed R-module we call saturation of (M, s), denoted by
sat(M, s) or simply by sat(M), the T -pointed R-module (P, u) which is the pushout (in the
category of T -pointed R-modules) of the diagram

M [J ] M

T P

s

tM

sM

We will also denote by sat(s) the map u and by sM the pushout map M → P .

Remark 3.11. Notice that the pushout map T → P of Definition 3.10 is an isomorphism onto
P [J ]. Indeed by definition of T -pointed R-module the following diagram commutes:

T = T [J ]

T

P [J ]

idT

sat(s)

where the vertical map on the left is the pushout map. It follows that sat(s), which is injective
by definition, is also surjective, hence an isomorphism, and the pushout map is its inverse. In
other words, the saturation of a T -pointed R-module is saturated.

3.2 (J, T )-extensions

We can finally introduce the main object of study of this section.

Definition 3.12. Let (M, s) be a T -pointed R-module. A (J, T )-extension of (M, s) is a triple
(N, i, t) such that (N, t) is a T -pointed R-module and i : M ↪→ N is a map of T -pointed R-
modules and a J-extension.

If (N, i, t) and (P, j, u) are two (J, T )-extensions of (M, s) we call a homomorphism of T -
pointed R-modules ϕ : N → P a homomorphism or map of (J, T )-extensions if ϕ ◦ i = j.

We denote by JT(M, s) the category of (J, T )-extensions of (M, s).

In the following we will sometimes omit the maps i and t from the notation and simply refer
to the (J, T )-extension N of M.

Remark 3.13. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module (M, s)
and let ϕ : N → P be a map of (J, T )-extensions. Then (P,ϕ, u) is a (J, T )-extension of (N, t).
In fact we have

(ϕ(N) :P J) ⊇ (j(M) :P J) = P .

Example 3.14. Let R = Z, let J be the complete ideal filter 2∞ of Z and let T be the

2∞-torsion and 2∞-injective Z-module
(
Z
[

1
2

]
/Z
)2

. If M = Z ⊕ Z/2Z ⊕ Z/2Z then the map

s : Z/2Z⊕Z/2Z→ T that sends (1, 0) to
(

1
2 , 0
)

and (0, 1) to
(
0, 1

2

)
turns (M, s) into a T -pointed

R-module.
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Let N = 1
2Z⊕ Z/4Z⊕ Z/2Z. The maps

t1 : Z/4Z⊕ Z/2Z → T

(1, 0) 7→
(

1
4 , 0
)

(0, 1) 7→
(
0, 1

2

) and

t2 : Z/4Z⊕ Z/2Z → T

(1, 0) 7→
(
0, 1

4

)
(0, 1) 7→

(
1
2 , 0
)

define two different T -pointed R-module structures (N, t1) and (N, t2) on N . The componentwise
inclusion f : M ↪→ N is a 2∞ extension. Since it is compatible with all the maps to T ,
both (N, f, t1) and (N, f, t2) are (2∞, T )-extensions of M . They are not isomorphic as (2∞, T )-
extensions, because they are not isomorphic as T -pointed R-modules.

We can immediately see some similarities between (J, T )-extensions and field extensions:
every map is injective, and every surjective map is an isomorphism.

Lemma 3.15. Every map of (J, T )-extensions is injective.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module (M, s) and let
ϕ : N → P be a map of (J, T )-extensions. Let n ∈ kerϕ. Since i : M ↪→ N is a J-extension
there is I ∈ J such that In ⊆ i(M). But since j : M ↪→ P is injective and ϕ(In) = 0, we must
have In = 0, hence n is J-torsion. But since ϕ is a map of T -pointed R-modules it is injective
on M [J ] (see Remark 3.2) so n = 0.

Corollary 3.16. Every surjective map of (J, T )-extensions is an isomorphism.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module (M, s) and let
ϕ : N → P be a map of (J, T )-extensions. In view of Lemma 3.15 it is enough to show that if ϕ
is an isomorphism of R-modules, then its inverse ϕ−1 : P

∼→ N is also a map of (J, T )-extensions.

But the fact that ϕ−1 ◦ j = i follows directly from ϕ ◦ i = j while t = u ◦ ϕ|−1
P [J] = u follows from

u ◦ ϕ|N [J] = t.

Proposition 3.17. Let (M, s) be a T -pointed R-module, let (N, i, t) be a (J, T )-extension of
(M, s) and let (P, j, u) be a (J, T )-extension of (N, t). Then (P, j ◦ i, u) is a (J, T )-extension of
(M, s).

Proof. The map j ◦ i is clearly a J-injective map of T -pointed R-modules, and it is a J-map by
Lemma 2.13.

3.3 Pullback and pushforward

One can recover much information about the (J, T )-extensions of a certain T -pointed R-module
by studying the extensions of its torsion submodule and of its saturation – see for example
our construction of the maximal (J, T )-extension in Section 3.4. In order to study the relation
between these categories, we introduce the more general pullback and pushforward functors
which, interestingly, form an adjoint pair.

Definition 3.18. If ϕ : L → M is a map of T -pointed R-modules and (N, i, t) is a (J, T )-
extension of M , we let

ϕ∗N := (i(ϕ(L)) :N J) , ϕ∗i := i|ϕ(L) , ϕ∗t := t|(ϕ∗N)[J]

and we call them the pullback along ϕ of N , i and t respectively.
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Lemma 3.19. Let ϕ : L → M be a map of T -pointed R-modules and let (N, i, t) be a (J, T )-
extension of M . Then (ϕ∗N,ϕ∗i, ϕ∗t) is a (J, T )-extension of ϕ(L).

Proof. Clearly (ϕ∗N,ϕ∗t) is a T -pointed R-module and

ϕ∗t ◦ ϕ∗i|ϕ(L)[J] = t ◦ i|ϕ(L)[J] = s|ϕ(L)

so ϕ∗i : (ϕ(L), s|ϕ(L))→ (ϕ∗N,ϕ∗t) is an injective map of T -pointed R-modules.

Moreover (ϕ∗i(ϕ(L)) :ϕ∗N J) = ϕ∗N by definition and by Lemma 2.10(2), so that
(ϕ∗N,ϕ∗i, ϕ∗t) is a J-extension.

Definition 3.20. If ϕ : L→M is a map of T -pointed R-modules, N and P are (J, T )-extensions
of M and f : N → P is a map of (J, T )-extensions, the map

f |ϕ∗N : ϕ∗N → ϕ∗P

is a map of (J, T )-extensions of ϕ(L), which we denote by ϕ∗f .

Proposition 3.21. Let ϕ : L→M be a map of T -pointed R-modules. The diagram

(N, i, t) (ϕ∗N,ϕ∗i, ϕ∗t)

(P, j, u) (ϕ∗P,ϕ∗j, ϕ∗u)

f ϕ∗f

defines a functor from JT(M, s) to JT(ϕ(L), s|ϕ(L)).

Proof. In view of Lemma 3.19 we only need to check that ϕ∗ behaves well with the respect to
the composition of maps of (J, T )-extensions. If

N
f−→ P

g−→ Q

are maps of (J, T )-extensions of (M, s), we have

ϕ∗g ◦ ϕ∗f = g|ϕ∗P ◦ f |ϕ∗N = (g ◦ f)|ϕ∗N = ϕ∗(g ◦ f) .

Definition 3.22. We call the functor of Proposition 3.21 the pullback along ϕ, and we denote
it by ϕ∗.

Definition 3.23. If ϕ : L → M is an injective and pure map of T -pointed R-modules and
(N, i, t) is a (J, T )-extension of L we denote by ϕ∗i : M → ϕ∗N the pushout of i along ϕ.

Lemma 3.24. Let ϕ : L → M be an injective and pure map of T -pointed R-modules and let
(N, i, t) be a (J, T )-extension of L. Then (ϕ∗N,ϕ∗i, ϕ∗t) is a (J, T )-extension of (M, s).

Proof. This follows from the fact that ϕ∗i is injective and ϕ∗N/(ϕ∗i)(M) ∼= N/i(L) is J-torsion,
because i : L→ N is a J-extension.

Lemma 3.25. Let ϕ : L→M be an injective and pure map of T -pointed R-modules, let (N, i, t)
and (P, j, u) be (J, T )-extensions of L and let f : N → P be a map of (J, T )-extensions. Then
there is a unique map of (J, T )-extensions of M

ϕ∗f : ϕ∗N → ϕ∗P

such that the diagram
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N ϕ∗N

P ϕ∗P

f ϕ∗f

commutes, where the horizontal maps are the pushout maps.

Proof. It is enough to apply the universal property of the pushout of ϕ∗N to the diagram

L M

N ϕ∗N

P ϕ∗P

i

ϕ

ϕ∗i ϕ∗j

f

ϕ∗f

Indeed the map ϕ∗f : ϕ∗N → ϕ∗P , whose existence is ensured by the universal property, is such
that ϕ∗P/ϕ∗f(ϕ∗N) ∼= P/f(N) is J-torsion.

Proposition 3.26. Let ϕ : L→M be an injective and pure map of T -pointed R-modules. The
diagram

(N, i, t) (ϕ∗N,ϕ∗i, ϕ∗t)

(P, j, u) (ϕ∗P,ϕ∗j, ϕ∗u)

f ϕ∗f

where ϕ∗f is as in Lemma 3.25, defines a functor from JT(L, r) to JT(M, s).

Proof. In view of Lemmas 3.24 and 3.25 it is enough to show that ϕ∗ behaves well with respect
to the composition of maps of (J, T )-extensions. This is immediate from the construction in
Lemma 3.25 and the uniqueness part of the universal property of the pushout.

Definition 3.27. We call the functor of Proposition 3.26 the pushforward along ϕ, and we
denote it by ϕ∗.

Theorem 3.28. Let ϕ : (L, r) ↪→ (M, s) be an injective pure map of T -pointed R-modules. Then
the functor ϕ∗ is left adjoint to ϕ∗.

Proof. Since ϕ is injective we will, for simplicity, denote ϕ(L) by L.
Let (N, i, t) be a (J, T )-extension of L and let (P, j, u) be a (J, T )-extension of M . We want

to show that we have

HomJT(L,r)(N,ϕ
∗P ) ∼= HomJT(M,s)(ϕ∗N,P )

naturally in N and P .
Let f : N → ϕ∗P be a map of (J, T )-extensions of L; notice that in particular f ◦ i = ϕ∗j.

Composing f with the natural inclusion ϕ∗P ↪→ P we get a map of T -pointed R-modules
f ′ : N → P such that f ′ ◦ i = j ◦ ϕ, so by the universal property of the pushout there exists a
unique map g : ϕ∗N → P that is a map of (J, T )-extensions of M .

We define a map

ΨN,P : HomJT(L,r)(N,ϕ
∗P )→ HomJT(M,s)(ϕ∗N,P )
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by letting ΨN,P (f) := g. The map Ψ is natural in N and P , since it is defined by means of a
universal property. Indeed, if h : N ′ → N is a map of (J, T )-extensions of L and f ′ = f ◦ h then
ΨN ′,P (f ′) is by definition the unique map ϕ∗N

′ → P that makes the pushout diagram commute
so it must coincide with g ◦ϕ∗h. Similarly if k : P → P ′ is a map of (J, T )-extensions of M then
ΨN,P ′(ϕ

∗k ◦ f) must coincide with k ◦ g.
To see that the map ΨN,P is injective, let f ′ : N → ϕ∗P be another map and assume that

ΨN,P (f) = ΨN,P (f ′). But then the composition of ΨN,P (f) with the pushout map N → ϕ∗N
coincides with the composition of f and the natural inclusion ϕ∗P ↪→ P , and analogously for f ′,
so we conclude that f = f ′.

To see that ΨN,P is surjective, let g′ : ϕ∗N → P be a map of (J, T )-extensions of M . Then
by definition of pullback its composition with N → ϕ∗N factors through ϕ∗P ↪→ P as a map
of (J, T )-extensions f ′ : N → ϕ∗P , and again by the uniqueness of the map of the universal
property of the pushout one can check that ΨN,P (f ′) = g′.

Remark 3.29. Let ϕ : L ↪→ M be an injective and pure map of T -pointed R-modules and
let (N, i, t) and (P, j, u) be (J, T )-extensions of L and M respectively. We can give an explicit
description of the unit

ηN : N → ϕ∗ϕ∗N

and the counit

εP : ϕ∗ϕ
∗P → P

of the adjunction.
Notice that the pushout map N → ϕ∗N is injective. Moreover, since N is a J-extension of

L, the image of this map is contained in ϕ∗ϕ∗N = (ϕ∗i(ϕ(L)) :ϕ∗N J). The resulting inclusion
N ↪→ ϕ∗ϕ∗N is the unit ηN .

By definition ϕ∗P is contained in P , and the diagram

L M

ϕ∗P P

ϕ

j

commutes, so by the universal property of the pushout there exists a map ϕ∗ϕ
∗P → P . This

map is the counit εP .

The following examples of pullback and pushforward functors are of particular importance to
us, because they will be key to the construction of maximal (J, T )-extensions.

Definition 3.30. Let M be a T -pointed R-module and let tM : M [J ] → M be the natural
inclusion of its torsion submodule. We will call the pullback functor t∗M the torsion functor and
we will denote it by tor.

Remark 3.31. For every (J, T )-extension of tor(M) the unit map

ηN : tor((tM )∗N)→ N

is an isomorphism. Indeed, we have tor((tM )∗N) = ((tM )∗N)[J ] = N [J ], and since N is a
(J, T )-extension of a J-torsion module and J is complete then N [J ] = N .

Notice that the inclusion sM of a T -pointed R-module into its saturation is injective and
pure.
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Definition 3.32. Let M be a T -pointed R-module and let sM : M → sat(M) be the inclusion
into its saturation. We will call the pushforward functor (sM )∗ the saturation functor and we
will denote it by sat.

Remark 3.33. The counit map εP : P → sat(s∗MP ) is an isomorphism. Indeed, one can see from
the definition of pullback that s∗MP = P is saturated, hence it coincides with its own saturation.

3.4 Maximal (J, T )-extensions

Maximal (J, T )-extensions are the analogue of algebraic closures in field theory. The main result
of this section is the proof of the existence of a maximal (J, T )-extension for any T -pointed
R-module, and we achieve this by first constructing such an extension for its torsion and its
saturation.

Definition 3.34. A (J, T )-extension Γ of the T -pointed R-module M is called maximal if for
every (J, T )-extension N of M there is a map of (J, T )-extensions ϕ : N ↪→ Γ.

The definition of T -pointed R-module already provides a maximal (J, T )-extension for any
J-torsion module.

Lemma 3.35. Let (M, s) be a T -pointed R-module. If M is J-torsion, then (T, s, idT ) is a
maximal (J, T )-extension of (M, s).

Proof. If (N, i, t) is a (J, T )-extension of M , then in particular we have

N = (i(M) :N J) =
((

0 :i(M) J
)

:N J
)
⊆ ((0 :N J) :N J) = (0 :N J) = N [J ]

so N is J-torsion. Then t : N ↪→ T satisfies t ◦ i = s and idT ◦t = t, so it is a map of
(J, T )-extensions.

The existence of a maximal (J, T )-extension of a saturated module comes from the existence
of a J-hull, and it requires only a little more technical work.

Lemma 3.36. Let (M, s) be a saturated T -pointed R-module and let ι : M ↪→ Γ be a J-hull of
M . Then

1. ι|M [J] : M [J ] ↪→ Γ[J ] is an isomorphism.

2. (Γ, ι, τ) is a maximal (J, T )-extension of (M, s), where τ := s ◦ ι|−1
M [J].

Proof. For (1) notice that ι|M [J] : M [J ] ↪→ Γ[J ] is an essential extension by Lemma 2.15, so it
is an isomorphism by Proposition 2.23.

For (2) we have that Γ is a (J, T )-extension of M , because it is a J-extension and τ◦ ι|M [J] = s.

Let (N, i, t) be any (J, T )-extension of M . Since i : M ↪→ N is a J-extension, there is a
homomorphism ϕ : N → Γ such that ϕ◦i = ι. Moreover, since t◦ i|M [J] = s and τ ◦ (ϕ ◦ i)|M [J] =

τ ◦ ι|[M [J] = s, we have τ ◦ ϕ|N [J] = t, so ϕ is a map of (J, T )-extensions. It follows that Γ is a

maximal (J, T )-extension of M .

Finally we can construct a (J, T )-extension of any T -pointed R-module.

Proposition 3.37. Let (Γ, ι, τ) be a (J, T )-extension of the T -pointed R-module (M, s) such that
Γ is saturated. Then Γ is a maximal (J, T )-extension of M if and only if sat(Γ) is a maximal
(J, T )-extension of sat(M).
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Proof. Assume first that Γ is a maximal (J, T )-extension of M and let (N, i, t) be a (J, T )-
extension of sat(M). Then there is a map ϕ : s∗MN → Γ of (J, T )-extensions of M , so there
is a map sat(ϕ) : sat(s∗MN) → sat(Γ) of (J, T )-extensions of sat(M). By Remark 3.33 we have
N ∼= sat(s∗MN), so there is also a map N → sat(Γ). This proves that sat(Γ, ι, τ) is a maximal
(J, T )-extension of sat(M).

Assume now that sat(Γ) is a maximal (J, T )-extension of sat(M). Let (N, i, t) be a (J, T )-
extension of M . Then there is a map of (J, T )-extensions f : sat(N) → sat(Γ) completing the
following diagram:

M [J ] M

N [J ] N Γ

T sat(M)

T sat(N) sat(Γ)

s

i|M[J]

sM

i ι

t sN

ϕ

sΓ
sat(s)−1

idT

sat(i)

sat(ι)

sat(t)−1 f

Notice that since Γ is saturated the map sΓ : Γ ↪→ sat(Γ) is an isomorphism. So we can define
ϕ := s−1

Γ ◦ f ◦ sN : N → Γ and we have

sΓ ◦ ϕ ◦ i = f ◦ sN ◦ i = f ◦ sat(i) ◦ sM = sat(ι) ◦ ss = sΓ ◦ ι

hence ϕ ◦ i = ι. Moreover, since sat(τ) ◦ sΓ = τ , we have

τ ◦ ϕ|N [J] = τ ◦ s−1
Γ ◦ f ◦ sN |N [J] =

= τ ◦ s−1
Γ ◦ f ◦ sat(t)

−1 ◦ t =

= τ ◦ s−1
Γ ◦ sat(τ)−1 ◦ t =

= t

so ϕ is a map of (J, T )-extensions. Hence Γ is a maximal (J, T )-extension of M .

Theorem 3.38. Every T -pointed R-module M admits a maximal (J, T )-extension. Moreover,
for any maximal (J, T )-extension Γ of M the following hold:

1. If Γ′ is another maximal (J, T )-extension of M , then Γ ∼= Γ′ as (J, T )-extensions;

2. The module Γ is saturated;

3. The module Γ is J-injective;

4. If (N, i, t) is a (J, T )-extension of M and ϕ : N → Γ is a map of (J, T )-extensions, then
(Γ, ϕ, τ) is a maximal (J, T )-extension of (N, t).

Proof. Let j : sat(M) ↪→ Γ be a J-hull of the saturation of M and let τ := sat(s) ◦ j|−1
sat(M)[J].

By Lemma 3.36 we have that (Γ, j, τ) is a maximal (J, T )-extension of sat(M). By Remark 3.33
we have that (Γ, ι, τ) = t∗M (Γ, j, τ) is a (J, T )-extension of M such that sat(Γ, ι, τ) ∼= (Γ, j, τ), so
by Proposition 3.37 we conclude that it is a maximal (J, T )-extension of M .
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Let now (Γ′, ι′, τ ′) be another maximal (J, T )-extension of (M, s). Then there is a map of
(J, T )-extensions f : Γ ↪→ Γ′ which is an essential J-extension by Lemma 2.15, as it is an
isomorphism on the J-torsion. Since Γ is J-injective we have that f is an isomorphism by
Proposition 2.23. This shows that any maximal (J, T )-extension of M is isomorphic to Γ, which
proves (1), (2) and (3) at once.

For (4) it is enough to notice that if j : sat(M) ↪→ Γ is a J-hull, then so is sat(ϕ), thus by
the same argument as above Γ is a maximal (J, T )-extension of N .

4 Automorphisms of (J, T )-extensions

Fix for this section a ring R, a complete ideal filter J of R and a J-torsion and J-injective left
R-module T . Fix moreover a T -pointed R-module (M, s) and a maximal (J, T )-extension (Γ, ι, τ)
of (M, s).

4.1 Normal extensions

We define normal extensions in analogy with field theory.

Definition 4.1. A (J, T )-extension i : M ↪→ N is called normal if every injective J-map f :
N ↪→ Γ such that f ◦ i = ι has the same image.

Notice that we are considering all injective J-maps that respect ι : M ↪→ Γ, even if they are
not maps of (J, T )-extensions, that is even if they do not respect the embeddings of the torsion
submodules into T .

Remark 4.2. Although we will not make use of it, it interesting to notice that the group
AutM (N) acts on EmbM (N,Γ) by composition on the right. It is then easy to see that N is
normal if and only if this action is transitive.

This is reminiscent of Galois theory à la Grothendieck. One might wonder if, assuming the
necessary finiteness conditions on automorphism groups hold, the category of (J, T )-extensions
is indeed a Galois category with fundamental functor EmbM (−,Γ). Unfortunately, the fact that
in general pushouts of (J, T )-extensions do not exist (see Remark 3.7) implies that this is not
the case.

We may refine this question as follows: does the category of (J, T )-extensions embed as the
subcategory of connected objects of some Galois category?

Proposition 4.3. Every saturated (J, T )-extension of M is normal.

Proof. Assume that M is saturated, let i : M ↪→ N be a (J, T )-extension and let f, g : N ↪→ Γ be
injective J-maps with f ◦ i = g ◦ i = ι. If f(N) 6= g(N), we may assume without loss of generality
that there is n ∈ N with f(n) 6∈ g(N). Then t := f(n) − g(n) ∈ Γ[J ] by Lemma 2.16. Since N
is saturated and g is injective we have t ∈ g(N), thus f(n) = g(n) + t ∈ g(N), a contradiction.
We deduce that f(N) = g(N), so N is normal.

Corollary 4.4. Every maximal (J, T )-extension is normal.

4.2 A fundamental exact sequence

Proposition 4.5. Let (N, i, t) be a normal (J, T )-extension of (M, s) and let AutM+N [J](N)
denote the subgroup of AutM (N) consisting of those automorphisms that restrict to the identity
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on the submodule of N generated by i(M) and N [J ]. Then the restriction map along sN : N →
sat(N)

Autsat(M)(sat(N))→ AutM+N [J](N)

is a well-defined group isomorphism.

Proof. Let us identify for simplicity N with its image sN (N) in sat(N), and let
σ ∈ Autsat(M)(sat(N)). To see that the image of σ|N is contained in N , let f : sat(N) ↪→ Γ be
a map of (J, T )-extensions of sat(M), which is necessarily also a map of (J, T )-extensions of M .
Since sat(s) is an isomorphism, also f ◦ σ is a map of (J, T )-extensions of sat(M), and since N
is normal we have that the image of N in Γ under f and under f ◦ σ are the same, which shows
that σ(N) = N . Since this holds for both σ and its inverse, we have that σ|N ∈ AutM (N), and
clearly σ is the indentity on N [J ].

To show that the restriction to N is an isomorphism, we construct an inverse. Let now
σ ∈ AutM+N [J](N), and recall that we can see it as a map of (J, T )-extensions of (M, s)

σ : (N, t)→ (N, t ◦ σ|N [J]) .

Composing it with sN we get a map

sN ◦ σ : (N, t)→ (sat(N), (sN )∗(t ◦ σ|N [J])) .

Moreover, the map sat(i) is also a map of (J, T )-extensions

sat(i) : (sat(M), (sM )∗s)→ (sat(N), (sN )∗(t ◦ σ|N [J]))

so by the universal property of the pushout there is a map of (J, T )-extensions

σ′ : (sat(N), (sN )∗t), (sat(N), (sN )∗(t ◦ σ|N [J])) .

It is straightforward to check that σ 7→ σ′ provides an inverse for the restriction map
Autsat(M)(sat(N))→ AutM (N), which is then an isomorphism.

Proposition 4.6. Let (N, i, t) be a (J, T )-extension of (M, s). Then the map

ϕ : AutM+N [J](N)→ Hom

(
N

i(M) +N [J ]
, N [J ]

)
σ 7→ (ϕσ : [n] 7→ σ(n)− n)

is an isomorphism of groups. In particular, Autsat(M)(sat(N)) is abelian.

Proof. We will denote by [n] the class of an element n ∈ N in N/(i(M) +N [J ]). Notice that for
any σ ∈ AutM+N [J](N) we have σ(n) − n ∈ N [J ] by Lemma 2.16, and ϕσ is a homomorphism
of R-modules. To see that σ 7→ ϕσ is a group homomorphism, let σ′ ∈ AutM+N [J](N). Then,
since σ is the identity on N [J ] and σ′(n)− n ∈ N [J ], we have

σ(σ′(n))− n = σ(σ′(n))− n+ σ′(n)− n− σ(σ′(n)− n)

= σ(n)− n+ σ′(n)− n

which shows that ϕ is a group homomorphism. It is also clearly injective, because if ϕσ(n) = n
then σ must be the identity.
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To prove surjectivity it is enough to show that for anyR-module homomorphism h : N/(i(M)+
N [J ])→ N [J ] the map

σh : N → N

n 7→ n+ h([n])

which is clearly the identity on i(M) + N [J ], is an automorphism of N . It is injective, because
if n = −h([n]) then in particular n is torsion and thus [n] = 0. It is also surjective, because for
any n ∈ N we have

σh(n− h([n])) = n− h([n]) + h([n− h([n])])

= n− h([n]− [n+ h([n])])

= n

Corollary 4.7. Let (N, i, t) be a normal (J, T )-extension of M . Denoting for simplicity by
sat(M) the image of sat(M) inside sat(N) we have

Autsat(M)(sat(N)) ∼= Hom

(
sat(N)

sat(M)
, tor(N)

)
.

Proof. The claim follows from the two propositions above and the fact that

N

i(M) +N [J ]
∼=

sat(N)

sat(M)
.

To see that the two quotients are isomorphic, consider the following map:

N → sat(N)/sat(M)

n 7→ sN (n) + sat(M)

Its kernel is i(M) +N [J ] and it is surjective because sat(N) is generated by the images of N and
T .

Remark 4.8. Let N be a (J, T )-extension of M and let σ ∈ AutM (N). The restriction of σ
to N [J ] is an element of AutM [J](N [J ]). Indeed, the image of a J-torsion element under a map
of (J, T )-extensions is again a J-torsion element; since this is true for both σ and σ−1 we can
conclude that σ|N [J] : N [J ]→ N [J ] is an automorphism.

Lemma 4.9. If (N, i, t) is a normal (J, T )-extension of (M, s), the restriction map

AutM (N)→ AutM [J](N [J ])

is surjective.

Proof. Let σ ∈ AutM [J](N [J ]). Notice that (N, i, t ◦ σ) is also a (J, T )-extension of M , and let
f : (N, i, t) ↪→ (Γ, ι, τ) and g : (N, i, t ◦ σ) ↪→ (Γ, ι, τ) be maps of (J, T )-extensions. Since N is
normal we have f(N) = g(N), thus f−1 ◦ g is an automorphism of N that restricts to σ.

The exact sequence appearing in the following theorem has been studied, in some particular
cases, in [JP21], [Pal14] and [Chapter 3].
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Theorem 4.10. Let M be a T -pointed R-module and let N be a normal (J, T )-extension of M .
Then there is an exact sequence of groups

1→ Hom

(
sat(N)

sat(M)
, tor(N)

)
→ AutM (N)→ Auttor(M)(tor(N))→ 1

Moreover Auttor(M)(tor(N)) acts on Hom(sat(N)/sat(M), tor(N)) by composition.

Proof. By Lemma 4.9 the map AutM (N) → Auttor(M)(tor(N)) is surjective and its kernel is
Auti(M)+N [J](N) by definition. By Proposition 4.5 this group is isomorphic to Autsat(M)(sat(N))
via the restriction under sN : N → sat(N). Combining this with Corollary 4.7 we get the desired
exact sequence.

The fact that Auttor(M)(tor(N)) acts on Auti(M)+N [J] by conjugation is a standard result
on short exact sequences with abelian kernel, and one can trace this action under the isomor-
phisms described above to check that on Hom(sat(N)/sat(M), tor(N)) this action is indeed the
composition of maps, similarly to [Chapter 3, Proposition 3.12].

5 Kummer theory for algebraic groups

5.1 General theory

Let K be a field and fix a separable closure Ks of K. Let G be a commutative algebraic group over
K, let R ⊆ EndK(G) be a subring of the ring of K-endomorphisms of G and let M ⊆ G(K) be an

R-submodule. Let J be a complete ideal filter of R, let T := G(K)[J ] and let Γ :=
(
M :G(K) J

)
.

We are interested in studying the field extension K(Γ) of K, that is the fixed field of the
subgroup of Gal(Ks | K) that acts trivially on Γ, and we want to do so using the theory of
(J, T )-extensions introduced in the previous section. A necesary and sufficient condition in order
to proceed this way is that T = G(K)[J ] be J-injective: indeed in this case Γ is a saturated, and
thus normal, (J, T )-extension of M .

Remark 5.1. The condition that T is J-injective for some, and in fact for all, ideal filters J ,
holds for example if G is a simple abelian variety with R a maximal order in the division algebra
EndK(G) ⊗ Q. Indeed in this case every non-zero element r of R is surjective on G(K), which
implies that T is divisible: if an element u ∈ G(K) is such that ru = t ∈ T and I ∈ J is such
that It = 0, then since I is a right ideal we have Iu = 0, so u ∈ T ; hence r : T → T is surjective
and T is divisible.

It follows that T is injective: this is a well-known statement if R is a Dedekind domain, but
the proof can be adapted to the non-commutative case as follows. Let I be a left ideal of R and
let f : I → T be a map that we wish to extend to a map f̃ : R → T . By [Rei75, Theorem 22.7]
there is a right fractional ideal J of R such that IJ = R and 1 ∈ JI ⊆ R. In particular there
are non-zero elements b1, . . . , bn ∈ J and a1, . . . , an ∈ I such that

∑n
i=1 biai = 1, and since T is

divisible there are x1, . . . , xn ∈ T such that aixi = f(ai). It follows that for every y ∈ I we have

f(y) = f

(
y

n∑
i=1

biai

)
=

n∑
i=1

(ybi)f(ai) = y

n∑
i=1

(biai)xi

and we can let f̃(r) = r
∑n
i=1(biai)xi for every r ∈ R.

Let us then assume that T = G(K)[J ] is J-injective, so that Γ is a saturated, therefore
normal, (J, T )-extension of M . Then the standard exact sequence of groups coming from the
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tower of Galois extensions K ⊆ K(T ) ⊆ K(Γ) maps into the exact sequence 4.10 via the Galois
action on the points of G, and we obtain the following commutative diagram of groups with
exact rows:

1 Gal(K(Γ) | K(T )) Gal(K(Γ) | K) Gal(K(T ) | K) 1

1 Hom
(

Γ
sat(M) , T

)
AutM (Γ) Auttor(M)(T ) 1

κ ρ τ

Notice that the action of AutM [J](T ) on Hom(Γ/(M + T ), T ) restricts to an action of Im(τ)
on Im(κ).

Definition 5.2. In the situation described above we will call the maps κ, τ and ρ the Kummer
representation, the torsion representation and the torsion-Kummer representation, respectively.

As in Section 2.4, if N and P are R-modules and S is a subset of HomR(N,P ) we let
ker(S) =

⋂
f∈S ker(f).

Theorem 5.3. There is an exact sequence of abelian groups

0→
(
sat(M) :sat(G(K)) J

)
sat(M)

→ ker(Im(κ))→ H1(Im(τ), T )

Proof. By Lemma 2.16 for any b ∈ G(K(T )) we may define a map

ϕb : Im(κ)→ T

σ 7→ σ(b)− b

which is a cocycle. It follows that the map

ϕ : G(K(T ))→ H1(Im(τ), T )

b 7→ ϕb

is a group homomorphism. Moreover its kernel is

ker(ϕ) = {b ∈ G(K(T )) | ϕb is a coboundary}
= {b ∈ G(K(T )) | ∃ t ∈ T such that σ(b)− b = σ(t)− t∀σ ∈ Im(κ)}
= {b ∈ G(K(T )) | ∃ t ∈ T such that σ(b− t) = b− t∀σ ∈ Im(κ)}
= G(K) + T

so that we have an exact sequence

0→ G(K) + T → G(K(T ))→ H1(Im(τ), T )

and considering the intersection of the first two terms with Γ we get

0→ Γ ∩ (G(K) + T )→ Γ ∩G(K(T ))→ H1(Im(τ), T ) .

Since M + T ⊆ Γ ∩ (G(K) + T ) we also have

0→ Γ ∩ (G(K) + T )

M + T
→ Γ ∩G(K(T ))

M + T
→ H1(Im(τ), T ) .
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Rewriting M + T = sat(M) and G(K) + T = sat(G(K)), noticing that

Γ ∩ sat(G(K)) =
(
sat(M) :sat(G(K)) J

)
and that

ker(Im(κ)) =

{
x ∈ Γ

M + T
| f(x) = 0∀ f ∈ Im(κ)

}
=
{x̃ ∈ Γ | σ(x̃) = x̃∀σ ∈ Im(κ)}

M + T

=
Γ ∩G(K(T ))

M + T

we get the desired exact sequence.

The following theorem generalizes [Chapter 3, Theorem 5.9].

Theorem 5.4. Assume that the End(T )-submodule of Hom(Γ/sat(M), T ) generated by Im(κ) is
finitely generated. Suppose that the following three conditions hold

1. There is a positive integer d such that

d ·
(
sat(M) :sat(G(K)) J

)
⊆ sat(M) .

2. There is a positive integer n such that

n ·H1(Im(τ), T ) = 0 .

3. There is a positive integer m such that the subring of End(T ) generated by Im(τ) contains

m · End(T ) .

Then Im(κ) contains dnm ·Hom(Γ/sat(M), T ).

Proof. Let V be the End(T )-submodule of Hom(Γ/sat(M), T ) generated by Im(κ) and let X =
Γ/sat(M). From (1) and (2) it follows that ker(V ) = ker(Imκ) ⊆ X[dn]. Since V is finitely
generated as an End(T )-module, by Proposition 2.32 we have

V = Hom

(
X

ker(V )
, T

)
⊇ Hom

(
X

X[dn]
, T

)
⊇ dn ·Hom(X,T ) .

Since Im(κ) is an Im(τ)-module, we have

Im(κ) = Im(τ) · Im(κ) ⊇ m · End(T ) · Im(κ) = m · V ⊇ dnm ·Hom(X,T )

and we conclude.

5.2 Elliptic curves over number fields

We keep the notation of the previous section and we further assume that K is a number field,
that G = E is an elliptic curve and that R = EndK(E). In particular we have that Ks = K and
that R is either Z or an order in an imaginary quadratic number field. Up to replacing K by an
extension of degree 2 we may assume that EndK(E) = EndK(E).

Notice that T = E(K)[J ] is contained in E(K)tors: indeed, if x ∈ T then there is I ∈ J such
that Ix = 0. Since R is an order in a number field there is some non-zero integer n ∈ I, so
nx = 0 and x is torsion.
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Proposition 5.5. The R-module E(K)[J ] is J-injective.

Proof. By [LJ96, Proposition 5.1] the R-module E(K)tors is injective, thus in particular J-

injective. Since E(K)[J ] =
(

0 :E(K)tors
J
)

it follows from Lemma 2.28 that E(K)[J ] is J-

injective.

Remark 5.6. Although not necessary for our applications, it is interesting to notice that in this
setting Γ is a maximal (J, T )-extension of M . Indeed E(K)/E(K)tors is a torsion-free module
over the commutative integral domain R, so it is injective. Then the short exact sequence of
R-modules

0→ E(K)tors → E(K)→ E(K)/E(K)tors → 0

splits, so that E(K) ∼= E(K)/T ⊕ T as R-modules and since R is Noetherian it follows that
E(K) is injective. As in the above proposition we may conclude that Γ is J-injective, thus it is
a maximal (J, T )-extension of M .

We now specialize to the case J =∞.

Remark 5.7. Notice that in case J =∞ we have T = G(K)tors and

Γ =
{
x ∈ E(K) | nx ∈M for some n ∈ Z>0

}
.

If R = Z then EndR(T ) is isomorphic, after fixing an isomorphism T ∼= (Q/Z)2, to Mat2×2(Ẑ).

If R is instead an order in an imaginary quadratic field then EndR(T ) ∼= R ⊗Z Ẑ. Indeed, fix

for every prime p a Zp-basis for Rp := R ⊗Z Zp and consider the Ẑ-subalgebra C =
∏
p Cp of

Mat2×2(Ẑ) =
∏
p Mat2×2(Zp), where Cp is the image of the embedding of Rp into Mat2×2(Zp)

given by its multiplication action on the Zp-module Z2
p
∼= Rp. Then R ⊗Z Ẑ ∼= C is a Ẑ-algebra

free of rank 2 as a Ẑ-module, since every Cp is a Zp-algebra of rank 2. Then for a suitable choice
of an isomorphism T ∼= (Q/Z)2 we have

EndR(T ) = {ϕ ∈ EndZ(T ) | f(r(t)) = r(f(t))∀r ∈ R, t ∈ T}

=
{
ϕ ∈ Mat2×2(Ẑ) | fc = cf ∀c ∈ C

}
= C

where the last equality follows by applying the Centralizer Theorem to the central simple Qp-
subalgebra R⊗Z Qp of Mat2×2(Qp) and then restricting the coefficients to Zp.

In both cases, the map τ coincides with the usual Galois representation associated with the
torsion of E.

Proposition 5.8. Assume that the abelian group structure of E(K) is known and that M is
given in terms of set of generators for E(K). Then there exists an effectively computable positive
integer d such that

d ·
(
sat(M) :sat(G(K)) ∞

)
⊆ sat(M) .

Proof. First of all notice that sat(M) = M + T and sat(G(K)) = G(K) + T seen as subgroups
of E(K). We conclude thanks to the considerations of [Chapter 3, Section 6.1].

Proposition 5.9. There exists an effectively computable positive integer n such that

n ·H1(Im(τ), T ) = 0 .
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Proof. This follows from [Chapter 3, Proposition 6.3] and [Chapter 3, Corollary 6.8] in the non-
CM case and from [Chapter 3, Proposition 6.12] in the CM case.

Proposition 5.10. There exists an effectively computable positive integer m such that the subring
of EndR(T ) generated by Im(τ) contains m · EndR(T ).

Proof. This follows again from [Chapter 3, Corollary 6.8] in the case R = Z and from [Lom17,
Theorem 1.5] in the CM case.

Theorem 5.11. Assume that the abelian group structures of E(K) and M are effectively com-
putable. Then there exists an effectively computable positive constant c such that the index of
Im(κ) in Hom(Γ/sat(M), T ) divides c.

Proof. This is a direct consequence of Theorem 5.4 and the three propositions above.

Remark 5.12. Since Theorem 5.4 is stated in a fairly general form, one might wonder if it can
be applied to obtain a version of Theorem 5.11 for higer-dimensional abelian varieties.

Provided that one is in, or can reduce to, a case in which T is a J-injective R-module (for
example if the abelian variety is simple and its endomorphism ring is a maximal order in a
division algebra, see Remark 5.1), the key steps are finding effective bounds for the integers n
and m of Theorem 5.4. Effective bounds for m are known, see for example [RG20, Théorème
1.5(2)].

It is also known (see [Chapter 1]) that a bound for n can be obtained by finding explicit
homotheties in Im(τ). This seems a harder problem to tackle, but one can hope to reduce to
finding homotheties in the images of the `-adic representations, as done in [Chapter 1, Section 7].
Explicit results on the existence of homotheties in the image of `-adic representations attached
to abelian varieties are obtained for example in [GM20].
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des Sciences. Série I. Mathématique, 312(4):323–328, 1991.

[BP11] Yuri Bilu and Pierre Parent. Serre’s uniformity problem in the split Cartan case.
Annals of Mathematics, 173(1):569–584, 2011.

[BP21] Peter Bruin and Antonella Perucca. Reductions of points on algebraic groups, II.
Glasgow Mathematical Journal, 63(2):484–502, 2021.

[BPR13] Yuri Bilu, Pierre Parent, and Marusia Rebolledo. Rational points on X+
0 (pr).

63(3):957–984, 2013.

145



146 BIBLIOGRAPHY

[BR03] Matthew H. Baker and Kenneth A. Ribet. Galois theory and torsion points on curves.
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