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Abstract. Motivated by applications in algebraic number theory, in this talk we will
explore “division modules” and highlight the connection between divisibility and injec-
tivity over an arbitrary ring. More precisely, if M is a submodule of a left R-module
N and I is a right ideal we call I-division module of M (inside N) the submoudle of
N consisting of those elements x such that Ix is contained in M . Using this classical
concept we will then provide a generalization of injective modules which, among other
things, extends the definition of p-divisibility for abelian groups. We will see how classical
results, such as Baer’s criterion and the exitence of an injective hull, extend seamlessly
to this more general setting.

1. Motivation from Kummer theory

Let A be a finitely generated subgroup of the multiplicative group Q×, for example
A = 〈2, 3〉. Fixing an algebraic closure Q of Q we may consider for every positive integer
n the group (beware the additive notation):

n−1A :=
{
x ∈ Q | xn ∈ A

}
which contains A as well as the n-th roots of unity of Q. Clearly we have n−1A ⊆ m−1A
whenever n divides m. Understanding certain properties of these groups, in particular
their relative automorphisms AutA(n−1A), is an important step for studying Kummer
extensions of Q, that are extensions of Q of the form Q(n−1A). Of great importance is
also the union of these groups

ΓA :=
⋃
n>0

n−1A =
{
x ∈ Q | xn ∈ A for some n > 0

}
.

The group ΓA is divisible, that is for every x ∈ ΓA and every positive integer n there is
y ∈ ΓA such that yn = x.

Let now E be an elliptic curve over some number field K, and fix an algebraic closure
K of K and a subgroup A ⊆ E(K). We may consider the groups

n−1A :=
{
x ∈ E(K) | nx ∈ A

}
which contain A and E(K)[n], and the extensions of K of the form K(n−1A). We call
this Kummer theory for elliptic curves, but nothing prevents us from stating the problem
more generally for any commutative algebraic group E.

As it turns out, it is more convenient to take A to be a module over the ring R =
EndK(E) (which for elliptic curves can only be Z or an order in a quadratic imaginary
field) and to use the R-module structure of the groups n−1A to our advantage. We are
thus led to investigating the properties of division modules over arbitrary rings.

As an “extra”, we might be interested in considering only those groups n−1A where n

is a power of some prime p. In this case the group Γ
(p)
A =

⋃
k>0(pk)−1A is p-divisible, that

is for every x ∈ Γ
(p)
A there is y ∈ Γ

(p)
A such that py = x.
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2. Division in modules

Fix for this and the following sections a unitary ring R.

Definition 2.1. If M ⊆ N are left R-modules and I is a right ideal of R, we call the
R-submodule of N

(M :N I) := {x ∈ N | Ix ⊆M}
the I-division module of M (inside N).

Remark 2.2. Notice that:

• (M :N (0)) = N and (M :N (1)) = M
• If M ⊆M ′ then (M :N I) ⊆ (M ′ :N I)
• If I ′ ⊇ I then (M :N I ′) ⊆ (M :N I)

In general we might want to work with (possibly infinite) unions of division mod-
ules. For example if R = Z we are interested in working with infinite unions such as⋃

n>1 (M :N (n)). So it makes sense to give the following definition.

Definition 2.3. An ideal filter of R is a non-empty set J of right ideals of R such that:

(1) If I, I ′ ∈ J then I ∩ I ′ ∈ J and
(2) If I ∈ J and I ′ is a right ideal of R that contains I, then I ′ ∈ J .

If J is an ideal filter of R and M ⊆ N are R-modules, we let

(M :N J) :=
⋃
I∈J

(M :N I)

which we call the J-division module of M in N , and

N [J ] := (0 :N J)

which we call the J-torsion submodule of N .

Remark 2.4. For an ideal filter J :

• Maximal ideal filter: If (0) ∈ J then J contains every right ideal of R. In this case
we denote J by 0. For every M ⊆ N we have (M :N 0) = N .
• Minimal ideal filter: We denote J = {R} by 1. For every M ⊆ N we have

(M :N 1) = M .
• Principal ideal filter: If I is a right ideal of R we let 〈I〉 be the set of all right

ideals of R containing I, which is an ideal filter. For every M ⊆ N we have
(M :N 〈I〉) = (M :N I).

Example 2.5. Let R = Z and J = 〈(12)〉 = {(1), (2), (3), (4), (6), (12)}. We have

(Z :Q J) =
⋃
d | 12

{q ∈ Q | dq ∈ Z} = Z ∪ 1

2
Z ∪ 1

3
Z ∪ 1

4
Z ∪ 1

6
Z ∪ 1

12
Z =

1

12
Z .

Ideal filters allow us to consider the possibly infinite unions of division modules men-
tioned in the introduction. We would also like to have a way to distinguish those ideal
filters that describe a complete iteration of the division process, unlike the example above.
We propose two definitions that might capture this concept, and we show that, under
certain condition, one is stronger than the other.

Definition 2.6. We call an ideal filter J of R:

• Complete if for every M ⊆ N we have ((M :N J) :N J) = (M :N J).
• Product-closed if for any I, I ′ ∈ J we have II ′ ∈ J .
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Proposition 2.7 ([1, Proposition 2.8]). Let R be a ring and let J be a product-closed ideal
filter of R. If for every I ∈ J the left ideal RI is finitely generated, then J is complete. In
particular, every product-closed ideal filter over a left-Noetherian ring is complete.

Example 2.8. For any unitary ring R, there are two interesting examples: the ideal filter
generated by the powers of a given prime number p

p∞ := {I right ideal of R | I ⊇ pnR for some n ∈ N}
and the one generated by all non-zero integers

∞ := {I right ideal of R | I ⊇ nR for some n ∈ N>0} .
Notice that some power of p is equal to 0 in R (respectively n = 0 for some n ∈ Nn>0)
then p∞ (resp. ∞) is simply the set of all two-sided ideals of R.

Remark 2.9. It is easy to check that the ideal filters introduced in Example 2.8 are both
product-closed. If, for example, R is Noetherian, then they are also complete.

On the other hand, the ideal filter J = 〈(12)〉 of R = Z is not complete, since
((M :N J) :N J) = 1

144Z 6= (M :N J).

3. J-injective modules

Fix for this section a unitary ring R and a complete ideal filter J of R.

Definition 3.1. An R-module homomorphism i : M → N such that (i(M) :N J) = N is
called a J-map.

We can finally give our definition of J-injective module. In words, one can say that an
injective module is one that admits extensions of maps to it along any injective map. A
J-injective module is one that admits extensions of maps into it along injective J-maps.

Definition 3.2. A left R-module Q is called J-injective if for every injective J-map
i : M ↪→ N and every R-module homomorphism f : M → Q there exists a homomorphism
g : N → Q such that g ◦ i = f .

M Q

N

(J-map) i

f

g

Remark 3.3. One may wonder if J-injective modules coincide with the injective objects
in some category, for example the subcategory of J-maps between R-modules. This is
at the moment an open question; the tricky part (that I was not able to solve so far) is
determining that monomorphisms are in this category: are there monomorphisms that are
not injective?

Remark 3.4.

• If J = 0 the definition of J-injective module coincides with that of injective module,
because any injective homomorphism is a 0-map.
• If J ′ ⊆ J then a J-injective module is also J ′-injective, because every J ′-map is

also a J-map.

The following Proposition is an analogue of the well-known Baer’s criterion in the
classical case of injective modules, and the proof is almost identical to the classical case.

Proposition 3.5 ([1, Proposition 2.20]). A left R-module Q is J-injective if and only if
for every two-sided ideal I ∈ J and every R-module homomorphism f : I → Q there is an
R-module homomorphism g : R→ Q that extends f .
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Remark 3.6. Let J = 0 be the maximal ideal filter of R and assume that J ′ = J \{(0)} is
an ideal filter; this amounts to say that no two non-zero ideals of R have trivial intersection,
which holds for example when R is an integral domain.

Using Proposition 3.5 one can easily show that an R-module Q is J-injective if and only
if it is J ′-injective. Indeed, one implication holds, as remarked above, because J ⊇ J ′, and
for the other it is enough to notice that the only map 0 → Q can always be extended to
the zero map on R.

One advantage of using J ′ instead of J is that the J ′-torsion submodule may be different
from M [0] = M . For example over Z we have J ′ = ∞ and M [∞] = Mtors, the torsion
subgroup.

Example 3.7. For modules over Z:

• Divisible (as an abelian group) ⇐⇒ injective ⇐⇒ ∞-injective
• p-divisible (as an abelian group) ⇐⇒ p∞-injective

See the appendix for proofs.

Example 3.8. Let M be an abelian group, let p be a prime and let J = p∞ be the
ideal filter of Z introduced in Example 2.8. Then the localization M [p−1] is a J-injective
Z-module. Indeed if i : N ↪→ P is an injective J-map and f : N → M [p−1] is any
homomorphism then for every x ∈ P there is k ∈ N such that pkx ∈ N , and one can define

g(x) := f(pkx)
pk

. It is easy to check that g is then a well-defined group homomorphism such

that g ◦ i = f .

4. Injective hulls

Definition 4.1. A map of R-modules i : M ↪→ N is called an essential extension if for
every nonzero submodule P of N we have P ∩ i(M) 6= 0.

It is a well-known fact of commutative algebra that every R-module M admits an
injective hull ι : M ↪→ Γ, which is an essential extension such that Γ is injective. Such an
extension, which is unique up to a not-necessarily-unique isomorphism that is the identity
on M , may be as well characterized by either of the following two properties:

(1) It is the largest essential extension of M , that is to say if i : M ↪→ N is an essential
extension then there is an (injective) R-module homomorphism j : N ↪→ Γ such
that ι ◦ i = j (the injectivity of j follows from the injectivity of ι and the fact that
i : M ↪→ N is an essential extension).

(2) It is the smallest injective extension of M , that is to say if i : M ↪→ N is an
injective R-module homomorphism and N is injective, then there is an injective
R-module homomorphism j : Γ ↪→ N such that j ◦ ι = i (the existence of a map
Γ → N that commutes with i follows from the injectivity of N , but the fact that
this map is injective does not).

As an example, the standard map Zn ↪→ Qn is an injective hull of the Z-module Zn.

We can draw an interesting parallel between the J-hull of an R-module M and the
algebraic closure k of a field k. Indeed k is at the same time the smallest algebraically
closed extension and the largest algebraic extension of k. Similarly to J-hulls, an algebraic
closure is unique up to a not-necessarily-unique isomorphism that fixes the base field.

There is an analogue construction for J-injectivity.
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Definition 4.2. Let J be a complete ideal filter of R and let M be a left R-module. An
injective J-map ι : M ↪→ Γ is called a J-hull of M if it is an essential extension and Γ is
J-injective.

The following theorem is not a replacement for the classical one, since it relies on it.

Theorem 4.3. Every left R-module M admits a J-hull, which is unique up to a not-
necessarily-unique isomorphism that is the identity on M .

Sketch of proof. Let ι : M ↪→ Ω be an injective hull of M and let Γ := (ι(M) :Ω J). One
can show that ι maps M into Γ and ι : M ↪→ Γ is indeed a J-hull of M , and that for any
other J-hull ι′ : M ↪→ Γ′ there is an isomorphism j : Γ

∼→ Γ′ such that j ◦ ι = ι′. �

Example 4.4. Let M be an abelian group, let p be a prime and let J = p∞ be the ideal
filter of Z introduced in Example 2.8. Write M as

M = Zr ⊕
k⊕

i=1

Z/peiZ⊕M [n]

where n is a positive integer coprime to p and the ei’s are suitable exponents. Let

Γ = (Z[p−1])r ⊕ (Z[p−1]/Z)k ⊕M [n]

and

ι : M → Γ

(z, (si mod pei)i, t) 7→
(
z
1 ,
(

s
pei mod Z

)
i
, t
)

Then ι : M → Γ is a J-hull. To see this it is enough to show that f : Zr ↪→ (Z[p−1])r and
gi : Z/peiZ ↪→ Z[p−1]/Z for every i = 1, . . . , k are J-hulls, and that M [n] is J-injective,
being trivially an essential extension of itself. The assertions about f and M [n] follow
from Example 3.8, noticing that multiplication by p is an automorphism of M [n] and that
Zr ↪→ (Z[p−1])r is an essential extension and a J-map.

So we are left to show that for every positive integer e the map g : Z/peZ ↪→ Z[p−1]/Z
defined by (s mod pe) 7→ ( s

pe mod Z) is a J-hull. It is a J-map because the Prüfer group

Z[p−1]/Z itself is J-torsion, and it is also essential because every subgroup of Z[p−1]/Z is
of the form 1

pd
Z, so it intersects the image of g in 1

pmin(e,d)Z.

Finally, Z[p−1]/Z is divisible as an abelian group, so in particular it is J-injective, since
in this case it is equivalent to being p-divisible.

Appendix A. Divisible and injectivity for Z-modules

Definition A.1. An abelian group A is called divisible if for every x ∈ A and every
positive integer n there is y ∈ A such that ny = x.

Proposition A.2. A Z-module is injective if and only if it is divisible as an abelian group.

Proof. Let A be an abelian group and assume that it is injective as a Z-module. Let x ∈ A
and n ∈ Z \ {0}. Consider the inclusion i : nZ ↪→ Z and the map f : nZ→ A which sends
n to x. Then since A is injective f extends to a map g : Z → A which sends n to x, so
letting y = g(1) we have ny = x, as required.

Assume now that A is divisible and let j : M ↪→ N be an injective homomorphism
of abelian groups and f : M → A any homomorphism. In order to extend f to a map
g : N → A we will use Zorn’s Lemma. Let S be the set of pairs (N ′, ϕ) with N ′ a sugroup
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of N containing M and ϕ a homomorphism N ′ → A that extends f . The set S admits a
partial order

(N ′, ϕ) 6 (N ′′, ψ) ⇐⇒ N ′ ⊆ N ′′ and ψ|N ′ = ϕ

Every chain in S has an upper bound. Namely, if C ⊆ S is a chain, i.e. a totally ordered
subset of S, then we can take N ′ to be the union of all N ′ for (N ′, ϕ) ∈ C and we let

Φ : N ′ → A
x 7→ ϕ(x), if there is any (N ′, ϕ) ∈ C with x ∈ N ′

which is well-defined because C is totally ordered (which means that if x belongs to N ′ and
to N ′′ for (N ′, ϕ) ∈ C and (N ′′, ψ) ∈ C, then either (N ′, ϕ) 6 (N ′′ψ) or (N ′′, ψ) 6 (N ′, ψ),
and in any case ϕ and ψ are compatible on x).

By Zorn’s lemma there is then a maximal element (N ′, ϕ) ∈ S, and we want to show
that N ′ = N , so that f extends to the whole N . Assume that N ′ 6= N and let x ∈ N \N ′;
if we manage to extend ϕ to ϕ+ : N ′ + 〈x〉 → A this will yield a contradiction with the
maximality of (N ′, ϕ), and thus we would be able to conclude that indeed N ′ = N .

If 〈x〉 ∩ N ′ = 0, we may simply define ϕ+(x) = 0. Otherwise 〈x〉 ∩ N ′ contains some
nx 6= 0 for some positive integer n which we may assume minimal with respect to this
property. Since A is divisible there is y ∈ A such that ny = ϕ(nx), and one easily checks
that defining ϕ+ as ϕ+(x) = y is compatible with ϕ. As explained above, this concludes
the proof. �

Definition A.3. Let p be a prime. An abelian group A is called p-divisible if for every
x ∈ A there is y ∈ A such that py = x.

Proposition A.4. A Z-module is p∞-injective if and only if it is p-divisible as an abelian
group.

Proof. Let A be an abelian group and assume that it is p∞-injective as a Z-module. Let
x ∈ A and consider the inclusion i : pZ ↪→ Z and the map f : pZ → A which sends p to
x. Then since A is p∞-injective and i is a p∞-map, f extends to a map g : Z→ A which
sends p to x, so letting y = g(1) we have py = x, as required.

Assume now that A is p-divisible and let j : M ↪→ N be an injective p∞-map and
f : M → A any homomorphism. as in the proof of Proposition A.2 we want to extend
f to a map g : N → A using Zorn’s Lemma. Proceding as before we may assume that
ϕ : N ′ → A extends f to some N ′ ( N , take x ∈ N \N ′ ans show that we can extend ϕ
to ϕ+ : N ′ + 〈x〉 → A.

If 〈x〉 ∩ N ′ = 0 we may once again let ϕ+(x) = 0. Otherwise 〈x〉 ∩ N ′ contains some
nx 6= 0 for n minimal. We claim that n is a power of p: indeed, write it as dm = n for
some positive integers d and m with p - d. Since mx ∈ N and j is a J-map we have
pkmx ∈M ⊆ N ′. It follows that mx = gcd(d, pk)mx ∈ N ′, but we assumed n minimal so
d = 1 and n must be a power of p, say pc. Now since A is p-divisible there must be y ∈ A
such that pcy = ϕ(pcx), and we just have to let ϕ+(x) = y. �
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