A tour of group theory with our companion cube

Sebastiano Tronto

The cube

Centers

Corners

Moves

Moves

Moves

- Single letter: 90° clockwise (looking at that face)
- Repeated moves: $UUU... = U^n$
- Sequences: R^2U : first do R^2 , then U

Example: R

Example: R^2

Example: R^3

Example: R^3 vs R^{-1}

Example: U

Example: D

Groups

Definition

A group is a set G with an an operation imes such that

- The operation × is associative
- There is a neutral element with respect to imes
- Every element has an inverse with respect to imes

Move sequences

 $G = \{$ sequences of moves on the cube $\}$

 \times = concatenation and grouping exponents ($U^2R \times R^{-1}U = U^3$)

- Associative: trivial
- Neutral element: empty sequence
- Inverse: e.g. the inverse of $R^2 U D^5 F$ is $F^{-1} D^{-5} U^{-1} R^{-2}$

Free groups

Let $\mathcal A$ be a set and $\mathcal A^{-1} = \{a^{-1} \mid a \in \mathcal A\}$ (just symbols)

Definition

The *free group* on \mathcal{A} is given by

- $G = \{ \text{sequences of elements of } \mathcal{A} \cup \mathcal{A}^{-1} \}$
- × = concatenation and grouping exponents

Free groups: examples

- \mathbb{Z} : free group on $\mathcal{A} = \{*\}$
- Moves on the cube: free group on $\mathcal{A} = \{U, D, R, L, F, B\}$

Free groups: universal property

Proposition

Let \mathcal{A} be a set, $F_{\mathcal{A}}$ the free group on \mathcal{A} and $i : \mathcal{A} \to F_{\mathcal{A}}$ the inclusion. Let G be any group. For every $f : \mathcal{A} \to G$ there is a unique group homomorphism $g : F_{\mathcal{A}} \to G$ with $g \circ i = f$.

Equivalent moves

All do the same to the cube

Equivalent moves

$$R^{-1}D^{-1}RU^{-1}R^{-1}DRU$$

 $ULD^{-1}L^{-1}U^{-1}LDL^{-1}$
Which is "better"?

Equivalence relation

Call $\mathcal S$ the group of move sequences (free group)

Definition For $x, y \in S$ we let

 $x \approx y \quad \iff \quad x \text{ and } y \text{ have the same effect on the cube}$

Equivalence relation

Call S the group of move sequences (free group)

Definition For $x, y \in S$ we let

> $x \approx y \iff x$ and y have the same effect on the cube $\iff xy^{-1}$ does nothing to the cube

Group quotient

For
$$x \in S$$
, let $[x] = \{y \in S \mid x \approx y\}$
Define $\mathcal{M} = \{[x] \mid x \in S\}$ with $[x] \times [y] = [xy]$

 $\begin{array}{l} \text{Question} \\ \textit{Is} \times \textit{well-defined?} \end{array}$

Answer

Yes:

$$x' \approx x, \ y' \approx y \implies x'y' \approx xy$$

Congruence relations vs normal subgroups

Move sequences that do nothing

 $\mathcal{N} = \{x \in \mathcal{S} \mid x \text{ does nothing to the cube}\}$

It is a subgroup:

- The empty sequence does nothing
- If x and y do nothing, so does xy
- If x does nothing, so does x^{-1}

It is normal:

 If x does nothing and y is any move sequence, y⁻¹xy does the same as y⁻¹y, which is the empty sequence

Cube configurations

Definition

$$\label{eq:C0} \begin{split} \mathcal{C}_0 &= \{ \text{all cube configurations} \\ \text{obtained by disassembling and} \\ \text{re-assembling the pieces} \} \end{split}$$

Move sequences and configurations

 $\mathcal{M} \xrightarrow{f} \mathcal{C}_0$

Question Is f surjective?

f([x]) = the configuration obtained applying x to the solved cube

Move sequences and configurations

 $\tilde{f}(x) =$ the configuration obtained applying x to the solved cube

Moving the cube (algebraically)

Definition

$$egin{aligned} \mathcal{C}_0 imes \mathcal{S} o \mathcal{C}_0 \ & (c,s) \mapsto c \cdot s = \mathsf{obtained} \ \mathsf{from} \ c \ \mathsf{applying} \ s \end{aligned}$$

Examples

Group actions

Let G be a group, X a set

Definition A (right) action of G on X is a map

 $\varphi: X \times G \to X$

such that for every $g, h \in G$ and every $x \in X$

 $\varphi(x,1) = x$ and $\varphi(x,gh) = \varphi(\varphi(x,g),h)$

Group actions

- Orbit: $x \cdot G = \{x \cdot g \mid g \in G\}$
- Stabilizer: $Stab_G(x) = \{g \in G \mid x \cdot g = x\}$
- Associated map $G o \operatorname{Sym}(X)$ by $g \mapsto \varphi(-,g)$
- $\ker(G \to \operatorname{Sym}(X)) = \bigcap_{x \in X} \operatorname{Stab}_G(x)$ is normal in G

${\mathcal S}$ vs ${\mathcal M}$ revisited

For the action of ${\mathcal S}$ on ${\mathcal C}_0$, for any $c,c'\in {\mathcal C}_0$

$$\mathsf{Stab}_\mathcal{S}(c) = \mathsf{Stab}_\mathcal{S}(c') = \mathcal{N}$$

So

$$\mathcal{M} = \mathcal{S}/\mathcal{N}$$

and the *induced* action of \mathcal{M} is *free*:

$$\forall c \in \mathcal{C}_0: \quad c \cdot [m] = c \implies [m] = 1$$

Legal configurations

Configurations obtainable by applying moves to a solved cube

$$\mathcal{C}_1 := \mathbf{\widehat{V}} \cdot \mathcal{M}$$

form an \mathcal{M} -torsor ($f : \mathcal{M} \to \mathcal{C}_1$ is a bijection)

Moving vs disassembling

Question

Is the action transitive, i.e. $C_1 = C_0$? If not, how many orbits are there?

Invariants (sketch)

For every element of C_1 :

- Permutation of edges and of corners have the same sign
- The sum of "orientations" of edges is even
- The sum of "orientations" of corners is a multiple of 3

(hard to define orientation, easy to prove)

Generators for the 12 orbits

Counting configurations

- The orbits of C_0 have the same size (because same stabilizers)
- $\#C_0 = 12! \cdot 8! \cdot 2^{12} \cdot 3^8$ (simple combinatorics)
- $\#\mathcal{M} = \#\mathcal{C}_1 = \#\mathcal{C}_0/12 = 12! \cdot 8! \cdot 2^{10} \cdot 3^7$

Recap

$$\begin{array}{c|c} \mathcal{C}_0 & \text{Cube configuration (disassembly)} \\ \mathcal{C}_1 \subseteq \mathcal{C}_0 & \text{Cube configuration (legal)} \\ \mathcal{S} & \text{Free group of move sequences} \\ \text{Action of } \mathcal{S} \text{ on } \mathcal{C}_0 & \text{Moving the cube} \\ \mathcal{N} \subseteq \mathcal{S} & \text{Sequences that do nothing} \\ \mathcal{M} = \mathcal{S}/\mathcal{N} & \text{Move sequences, up to "same effect"} \end{array}$$

Define the cube mathematically

