A tour of group theory with our companion cube
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Moves

¢ Single letter: 90° clockwise (looking at that face)
® Repeated moves: UUU ... = U"

e Sequences: R?U: first do R?, then U



Example: R




Example: R?




Example: R3




Example: R3 vs R~}
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Example: D




Groups

Definition

A group is a set G with an an operation X such that
® The operation X is associative
® There is a neutral element with respect to x

® Every element has an inverse with respect to X



Move sequences

= {sequences of moves on the cube}
= concatenation and grouping exponents (U?R x R~1U = U®)

® Associative: trivial
® Neutral element: empty sequence
® Inverse: e.g. the inverse of RZUD®F is F 1D 5U~1R2



Free groups

Let A be asetand A7 ={a71|ae A} (just symbols)

Definition

The free group on A is given by
® G = {sequences of elements of AU A7!}
® X = concatenation and grouping exponents



Free groups: examples

e 7: free group on A = {x}

® Moves on the cube: free group on A= {U,D,R, L, F,B}



Free groups: universal property

Proposition
Let A be a set, F4 the free group on A and

i : A— F4 the inclusion. Let G be any group.

For every f : A — G there is a unique group
homomorphism g : F4 — G withgoi=f.



Equivalent moves

R3

R—l

R67
FBU?D?*F 1B ' 13FBU?D?*F~ B!

All do the same to the cube



Equivalent moves

RID'RUIRIDRU
uLD 'L tu~tLpLt
Which is “better”?




Equivalence relation

Call S the group of move sequences (free group)

Definition
For x,y € S we let

X~y <= xand y have the same effect on the cube



Equivalence relation

Call S the group of move sequences (free group)
Definition
For x,y € S we let

Xy <= xand y have the same effect on the cube

<=  xy ! does nothing to the cube



Group quotient

ForxeS, let[x]={yeS|x~y}
Define M = {[x] | x € S} with [x] x [y] = [xy]

Question
Is x well-defined?

Answer

Yes:
/ / ./
XX,y Ry = Xy =Xy



Congruence relations vs normal subgroups

Congruence relations on G
(equivalence relations with
/ / !,
X' ~x, Yy ~y = Xy ~xy)

X~y
N = [1] =
xy teN

Normal subgroups of G
(Subgroups N C G with
ncN, geG = glngcN)




Move sequences that do nothing

N = {x € § | x does nothing to the cube}

It is a subgroup:
® The empty sequence does nothing
® If x and y do nothing, so does xy

® If x does nothing, so does x~!

It is normal:

e If x does nothing and y is any move sequence, y~1xy does
the same as y 'y, which is the empty sequence



Cube configurations

» g 9’0 'h
Definition ‘o Q ’U B‘..

Co = {all cube configurations l

obtained by disassembling and
re-assembling the pieces}




Move sequences and configurations

Question
Is f surjective?

f([x]) = the configuration obtained applying x to the solved cube



Move sequences and configurations

f
M < > Co
T Question

f Is f surjective?
S

f(x) = the configuration obtained applying x to the solved cube



Moving the cube (algebraically)
Definition

CoXS—)Co

(¢,s) — c - s = obtained from ¢ applying s

Examples

@ﬂ:@
ﬁﬂU:(ﬁ-R).uzﬁ-U:ﬁ



Group actions

Let G be a group, X a set

Definition
A (right) action of G on X is a map
p: XxG—=>X

such that for every g, h € G and every x € X

p(x,1)=x  and  ¢(x,gh) = ¢(p(x,g), h)



Group actions

Orbit: x-G={x-g|ge G}
Stabilizer: Stabg(x) ={g€ G |x-g=x}
Associated map G — Sym(X) by g — ¢(—, g)

ker(G — Sym(X)) = [Nyex Stabg(x) is normal in G



S vs M revisited

For the action of S on Cy, for any ¢, c’ € Cy

Stabs(c) = Stabgs(c') =N

So
M=S/N

and the induced action of M is free:

Vecely: c-ml=c = [m=1



Legal configurations

Configurations obtainable by applying moves to a solved cube
Ci =¥ - M

form an M-torsor (f : M — Cj is a bijection)



Moving vs disassembling

Question

Is the action transitive, i.e. C1 = Co?
If not, how many orbits are there?

= Cl < Co

=



Invariants (sketch)

For every element of Cy:

® Permutation of edges and of corners have the same sign
® The sum of “orientations” of edges is even

® The sum of “orientations” of corners is a multiple of 3

(hard to define orientation, easy to prove)






Counting configurations

® The orbits of Cy have the same size (because same stabilizers)
® #(Co=12!-8!-212.3% (simple combinatorics)

® #M =#C = #Cp/12 = 12! - 81.210.37



Co

C1 CC

)

Action of S on Cy
NCS
M=8S/N

Recap

Cube configuration (disassembly)
Cube configuration (legal)

Free group of move sequences
Moving the cube

Sequences that do nothing

Move sequences, up to “same effect”



The pursuit of happiness
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The pursuit of happiness
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