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Abstract. Let G be a commutative algebraic group over a field K of characteristic
zero. We are interested in studying the smallest field extension of K that contains
the coordinates of all the points of G over some algebraic closure of K that have a
multiple in G(K), or other similar field extensions. In order to do so we first need to
understand certain properties of G as a module over the ring of K-endomorphisms of
G, and in particular its “division extensions”. Using the theory of J-injective modules
introduced in my previous talk we will construct a category that in a sense describes all
such extensions.

1. Motivation

Let K be a field of characteristic 0 and fix an algebraic closure K of K. Let G be
a commutative algebraic group over K, let R be a subring of EndK(G) and let J be
a complete ideal filter of R (as defined in my previous talk). Let M ⊆ G(K) be an
R-submodule of G(K). We are interested in studying the R-module

Γ :=
(
M :G(K) J

)
from a purely algebraic point of view first, and from a number theoretical perspective (i.e.
studying the tower of extensions K ⊆ K(Γ[J ]) ⊆ K(Γ)) later.

If for example G is an abelian variety, R = Z and J = p∞ we have

Γ ∼=
(
Z[p−1]

)rkZM ⊕G(K)[p∞]

where rkZM is the rank of a free part of M , or if you prefer the dimension of the Q-vector
space M ⊗Z Q. It is clear from this description that Γ depends in part on the R-module

structure of M , but also on G: we know from last time that
(
Z[p−1]

)rkZM is a J-hull of
M , and as such it depends only on R, M and J ; but there is no way to recover the torsion
part G(K)[p∞] from the data (R,M, J) without any information on G.

In order to continue our “purely algebraic” study of the R-module Γ we will fix a suitable
R-module T and declare it to be our “maximal torsion”G(K)[J ]. Under certain conditions,
which hold for example when G is an elliptic curve, the module Γ is then determined by
the data (R,M, J, T ). However, in the general algebraic setting, the resulting algebraic
theory bears interesting similiraties with Galois theory of field extensions.
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2. The category of (J, T )-extensions

Fix for this section a unitary ring R, a complete ideal filter J of R and a J-torsion and
J-injective left R-module T .

Definition 2.1. A T -pointed R-module is a pair (M, s), where M is a left R-module and
s : M [J ] ↪→ T is an injective homomorphism.

If (L, r) and (M, s) are two T -pointed R-modules, we call an R-module homomorphism
ϕ : L→M a homomorphism or map of T -pointed R-modules if s ◦ ϕ|M [J ] = r.

In the following we will sometimes omit the map s from the notation and simply refer
to the T -pointed R-module M if clear from the context or if we don’t need to refer to it
explicitly.

Remark 2.2. A map ϕ : (L, r) → (M, s) of T -pointed R-modules is injective on L[J ].
Indeed s ◦ ϕ|L[J ] = r is injective, so ϕ|L[J ] must be injective as well.

Definition 2.3. Let (M, s) be a T -pointed R-module. A (J, T )-extension of (M, s) is
a triple (N, i, t) such that (N, t) is a T -pointed R-module and i : M ↪→ N is a map of
T -pointed R-modules and a J-extension.

If (N, i, t) and (P, j, u) are two (J, T )-extensions of (M, s) we call a homomorphism of
T -pointed R-modules ϕ : N → P a homomorphism or map of (J, T )-extensions if ϕ◦i = j.

We denote by JT(M, s) the category of (J, T )-extensions of (M, s).

In the following we will sometimes omit the maps i and t from the notation and simply
refer to the (J, T )-extension N of M if clear from the context or if we don’t need to refer
to them explicitly.

We can immediately see some similarities between (J, T )-extensions and field extensions:
every map is injective, and every surjective map is an isomorphism.

Lemma 2.4. Every map of (J, T )-extensions is injective.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module (M, s)
and let ϕ : N → P be a map of (J, T )-extensions. Let n ∈ kerϕ. Since i : M ↪→ N is a
J-extension there is I ∈ J such that In ⊆ i(M). But since j : M ↪→ P is injective and
ϕ(In) = 0, we must have In = 0, hence n is J-torsion. But since ϕ is a map of T -pointed
R-modules by remark 2.2 we have n = 0. �

Corollary 2.5. Every surjective map of (J, T )-extensions is an isomorphism.

Proof. Let (N, i, t) and (P, j, u) be (J, T )-extensions of the T -pointed R-module (M, s)
and let ϕ : N → P be a map of (J, T )-extensions. In view of Lemma 2.4 it is enough to

show that if ϕ is an isomorphism of R-modules, then its inverse ϕ−1 : P
∼→ N is also a

map of (J, T )-extensions. But the fact that ϕ−1 ◦ j = i follows directly from ϕ ◦ i = j and

t = u ◦ ϕ|−1
P [J ] = u follows from u ◦ ϕ|N [J ] = t. �

Proposition 2.6. Let (M, s) be a T -pointed R-module, let (N, i, t) be a (J, T )-extension of
(M, s) and let (P, j, u) be a (J, T )-extension of (N, t). Then (P, j◦i, u) is a (J, T )-extension
of (M, s).

Proof. The j ◦ i is clearly a map of T -pointed R-modules, so we are left to check that it is
a J-extension. Since J is complete (see my previous talk), and omitting the map i and j
from the notation for simplicity, we have

(M :P J) = ((M :P J) :P J) ⊇ ((M :N J) :P J) = (N :P J) = P

so (M :P J) = P , which shows that j ◦ i : M ↪→ P is a (J, T )-extension. �
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3. Pushout of T -pointed R-modules

Given a T -pointed R-module (M, s), there are two interesting T -pointed R-modules
associated with it: its torsion (M [J ], s), which we will sometimes denote by tor(M, s),
and its saturation sat(M, s), which can be defined as the pushout of R-modules

M [J ] M

T sat(M)

s

tM

sM

It can be seen that the bottom map surjects onto sat(M)[J ], and its inverse sat(s) :
sat(M)[J ]→ T is the structural map of the T -pointed R-module sat(M). We will call any
T -pointed R-module (M, s) such that s : M [J ] → T is an isomorphism (or equivalently
that is isomorphic to its saturation) saturated.

It would be interesting to relate the (J, T ) extensions of a T -pointed R-module to those
of its torsion and its saturation.

For the torsion, the process is relatively straightforward: we just need to consider the
J-torsion submodule of an extension. This can be seen as a pullback operation.

For the saturation it seems natural that we make use of a pushout of some sorts along
the map M ↪→ sat(M): after all, the saturation itself is a pushout construction. This is
possible, but the construction of a pushout in the category of (J, T )-extensions requires
some caution: as is the case in the category of field extensions, the pushout of two (J, T )-
extensions does not always exist.

Proposition 3.1. Let (L, r), (M, s) and (N, t) be T -pointed R-modules and let f : L→M
and g : L→ N be maps of T -pointed R-modules. Assume that:

(1) f is pure, that is (f(L) :M J) = f(L) +M [J ], and that
(2) f is injective.

Then the pushout (P, i, j) of f along g exists in the category of T -pointed R-modules.
Moreover, the pushout map i : M → N is injective if g is injective, and the pushout

map j : M → N is injective if f is injective.

Sketch of proof. The idea is to take the pushout of f along g as maps of R-modules and
then further identify those torsion elements that map to the same element in T .

More explicitly, let P ′ be the pushout of f along g as maps of R-modules and write it
as (M ⊕ N)/S where S = {(f(λ),−g(λ)) | λ ∈ L}. Let P be the quotient of P ′ by the
submodule

K := 〈{[(m,−n)] | for all m ∈M [J ], n ∈ N [J ] such that s(m) = t(n)}〉 .
One key step for giving a map P [J ] ↪→ T is showing that P ′[J ] is generated by the images
of M [J ] and N [J ], and it is in this step that the two assumptions on f are used. After
doing so, it is relatively straightforward to show that P is the required pushout and that
the injectivity of maps is preserved. �

Remark 3.2. It is easy to see that, in the situation of Proposition 3.1, if (N, i, t) is a
(J, T )-extension of (L, r) then the pushout is a (J, T )-extension of (M, s).
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The following example shows the necessity of the “purity” condition.

Example 3.3. Let R = Z, J = 2∞, T = Z
[

1
2

]
/Z, L = Z and M = N = 1

2Z. The
R-modules L, M and N are T -pointed via the zero map, since their J-torsion is trivial.
Let f : L ↪→ M and g : L ↪→ N be the natural inclusions and notice that they are maps
of T -pointed R-modules that are not pure. We claim that the pushout of f along g does
not exist in the category of T -pointed R-modules.

To see this, assume by contradiction that (P, u) is the pushout of f along g and consider
the T -pointed R-module

(
1
2Z⊕ Z/2Z, z

)
, where z : Z/2Z→ T is the only possible injective

map. Consider the diagram

L M

N P

1
2Z⊕

Z
2Z

g

f

i k

j

l

ϕ

where the maps k and l are defined as

k : 1
2Z → 1

2Z⊕
Z
2Z l : 1

2Z → 1
2Z⊕

Z
2Z

and
1
2 7→

(
1
2 , 0
)

1
2 7→

(
1
2 , 1
)

Notice that k and l are maps of T -pointed R-modules such that k ◦ f = l ◦ g. Then by
assumption there exists a unique map of T -pointed R-moduels ϕ : P → 1

2Z ⊕ Z/2Z that

makes the diagram commute. In particular we have ϕ(j(1
2)) 6= ϕ(i(1

2)), which implies that

j(1
2) 6= i(1

2). But since 2j(1
2) = j(g(1)) = i(f(1)) = i(1

2) we have that t := j(1
2)− i(1

2) is a

2-torsion element of P , and we must have u(t) = 1
2 .

Consider now the map k′ : M → 1
2Z ⊕ Z/2Z mapping 1

2 to
(

1
2 , 0
)
, just as l does. This

is again a map of T -pointed R-modules such that k′ ◦ f = l ◦ g, so there must be a map
of T -pointed R-modules ϕ′ : P → 1

2Z ⊕ Z/2Z that makes this new diagram commute.

But such a map ϕ′ must map t to 0, because ϕ′(j(1
2)) =

(
1
2 , 0
)

= ϕ′(i(1
2)). But then the

diagram of structural maps into T

P [J ]

T

Z
2Z

u

ϕ′|P [J]

z

would not commute, which is a contradiction. This proves our claim.

Open question 1. Is there a larger category, analogous to that of finite algebras over
a field, in which all pushouts of (J, T )-extensions exist?
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4. Pullback and pushforward functors

As stated at the beginning of the section, our goal is to relate the (J, T )-extensions of
a T -pointed R-module M to those of its torsion tor(M) and its saturation sat(M). It
is however interesting to study two more general contructions, namely the pullback and
pushforward functors.

Let ϕ : (L, r) → (M, s) be a map of T -pointed R-module. For any (J, T )-extension
(N, i, t) of (M, s) we can define the pullback

(ϕ∗N, ϕ∗i, ϕ∗t) :=
(

(i(ϕ(L)) :N J) , i|ϕ(L) , t|(ϕ∗N)[J ]

)
which, as one can easily see, is a (J, T )-extension of (L, r). One can define the pullback
ϕ∗f of a map f : N → P of (J, T )-extensions of (M, s) simply by restricting it to ϕ∗N ,
which is a submodule of N . In this way ϕ∗ becomes a functor

ϕ∗ : JT(M, s)→ JT(L, r)

which we call the pullback along ϕ.

If ϕ is pure and injective we can moreover define, for every (J, T )-extension (N, i, t) of
(L, r), the pushforward (ϕ∗N,ϕ∗i, ϕ∗t) via the pushout diagram

(L, r) (M, s)

(N, t) (ϕ∗N,ϕ∗t)

i

ϕ

ϕ∗i

One can easily see that (ϕ∗N,ϕ∗i, ϕ∗t) is a (J, T )-extension of (M, s), and using the
universal property of the pushout one can define a map of (J, T )-extensions ϕ∗f : ϕ∗N →
ϕ∗P for every map of (J, T )-extensions f : N → P . In this way we get a functor

ϕ∗ : JT(L, r)→ JT(M, s)

which we call the pushforward along ϕ.

Theorem 4.1. Let ϕ : (L, r) ↪→ (M, s) be an injective and pure map of T -pointed R-
modules. Then the functor ϕ∗ is left adjoint to ϕ∗.

Now we can finally talk about the two particular cases that are most interesting for us.
Let M be a T -pointed R-module. Denoting by

tM : M [J ] ↪→M

the inclusion map, we call the pullback along this map t∗M the torsion functor, and we
denote it by tor.

The inclusion of M into its saturation

sM : M ↪→ sat(M)

is injective and pure, thus we may consider the pushforward (sM )∗. We call this functor
the saturation functor, and we denote it by sat.
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5. Maximal (J, T )-extensions

Maximal (J, T )-extensions are the analogue of the algebraic (or separable) closure in
field theory. The main result of this section is the construction of a maximal (J, T )-
extension for any T -pointed R-module, and we achieve this by first constructing such an
extension for its torsion and its saturation.

Definition 5.1. A (J, T )-extension Γ of the T -pointed R-module M is called maximal if
for every (J, T )-extension N of M there is a map of (J, T )-extensions ϕ : N ↪→ Γ.

The very definition of T -pointed R-module already provides a maximal (J, T )-extension
for any J-torsion module.

Lemma 5.2. Let (M, s) be a T -pointed R-module. If M is J-torsion, then (T, s, idT ) is
a maximal (J, T )-extension of (M, s).

Proof. If (N, i, t) is a (J, T )-extension of M , then in particular we have

N = (i(M) :N J) =
((

0 :i(M) J
)

:N J
)
⊆ ((0 :N J) :N J) = (0 :N J) = N [J ]

so N is J-torsion. Then t : N ↪→ T satisfies t ◦ i = s and idT ◦t = t, so it is a map of
(J, T )-extensions. �

The existence of a maximal (J, T )-extension of a saturated module comes from the
existence of a J-hull.

Lemma 5.3. Let (M, s) be a saturated T -pointed R-module and let ι : M ↪→ Γ be a J-hull

of M . Then (Γ, ι, τ), where τ = s ◦ ι|−1
M [J ], is a maximal (J, T )-extension of (M, s).

Finally we can construct a (J, T )-extension of any T -pointed R-module using the last
two results.

Theorem 5.4. Every T -pointed R-module M admits a maximal (J, T )-extension. More-
over, for any maximal (J, T )-extension Γ of M the following hold:

(1) If Γ′ is another (J, T )-extension of M , then Γ ∼= Γ′ as (J, T )-extensions.
(2) Γ is saturated.
(3) Γ is J-injective.
(4) If (N, i, t) is a (J, T )-extension of M and ϕ : N → Γ is a map of (J, T )-extensions,

then (Γ, ϕ, τ) is a maximal (J, T )-extension of (N, t).

Idea of proof. Let Γ be a maximal (J, T )-extension of the saturation of M . �
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6. A glimpse of Galois theory

Fix a T -pointed R-module (M, s) and a maximal (J, T )-extension (Γ, ι, τ) of (M, s).

If (N, i, t) is a (J, T )-extension of (M, s), we will denote by AutM (N) the group of R-
module automorphisms σ of N such that σ◦i = i. Notice that these are not automorphisms
of the (J, T )-extension (N, i, t), because we do not require that t ◦ σ|M [J ] = s.

In a similar way we let EmbM (N,Γ) denote the set of injective R-module maps f :
N ↪→ Γ such that f ◦ i = ι. Again, these are not necessarily maps of (J, T )-extensions,
but one can see that given f ∈ EmbM (N,Γ) the map z := τ ◦ f |N [J ] : N [J ] ↪→ T is

such that (N, i, z) is a (J, T )-extension of (M, s) and f : (N, i, z) → (Γ, ι, τ) is a map of
(J, T )-extensions.

Definition 6.1. A (J, T )-extension i : M ↪→ N normal if every element of EmbM (N,Γ)
has the same image.

Using the fact that for any two f, g ∈ EmbM (N,Γ) and any n ∈ N we have f(n)−g(n) ∈
Γ[J ], one can show that every saturated extension is normal. In particular, every maximal
(J, T )-extension is normal.

We can define a (right) action of AutM (N) on EmbM (N,Γ) by composition: if σ ∈
AutM (N) and f ∈ EmbM (N,Γ) then f ◦ σ is again an elment of EmbM (N,Γ). This
action is clearly free, that is if for σ, σ′ ∈ AutM (N) and (z, f) ∈ EmbM (N,Γ) we have
(z, f) · σ = (z, f) · σ′, then σ = σ′, because f is injective.

Proposition 6.2. A (J, T )-extension N of M is normal if and only if the action of
AutM (N) on EmbM (N,Γ) is transitive.

Proof. Assume that N is normal and let f, g ∈ EmbM (N,Γ). Since f and g both factor
through the inclusion f(N) ↪→ Γ, we can consider the automorphism of N given by
f−1 ◦ g, which is in AutM (N). Then clearly f ◦ (f−1 ◦ g) = g, and since τ ◦ g|N [J ] = w

and τ ◦ f |N [J ] = z we have z ◦ (f−1 ◦ g)
∣∣
N [J ]

= w, showing that the action is transitive.

If the action is transitive and fix f ∈ EmbM (N,Γ), every other element g of EmbM (N,Γ)
is of the form f ◦ σ for some σ ∈ AutM (N), so it has the same image as f . �

Open question 2. How close can we actually get to a “Galois theory” of (J, T )-
extensions? Related to the previous first open question, can we find a Galois category
whose subcategory of connected objects is exactly our category of (J, T )-extensions?
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7. An important exact sequence

The key property of normal extensions for us is the following:

Lemma 7.1. If (N, i, t) is a normal (J, T )-extension of (M, s), the restriction map

AutM (N)→ AutM [J ](N [J ])

is surjective.

Proof. Let σ ∈ AutM [J ](N [J ]). Notice that (N, i, t ◦ σ) is also a (J, T )-extension of M ,
and let f : (N, i, t) ↪→ (Γ, ι, τ) and g : (N, i, t ◦ σ) ↪→ (Γ, ι, τ) be maps of (J, T )-extensions.
Since N is normal we have f(N) = g(N), thus f−1 ◦ g is an automorphism of N that
restricts to σ. �

The kernel of the surjective map above consists exactly of those automorphisms of
N that restrict to the identity on i(M) + N [J ], and with a slight abuse of notation
we may denote it by AutM+N [J ](N). One can see that the restriction along the map
sN : N ↪→ sat(N) induces an isomorphism

Autsat(M)(sat(N))
∼→ AutM+N [J ](N)

and so for every normal (J, T )-extension N of M we have an exact sequence

1→ Autsat(M)(sat(N))→ AutM (N)→ Auttor(M (tor(N))→ 1

Which relates the autormism group of N with that of its torsion and its saturation.

Moreover, one can show that the map

ϕ : AutM+N [J ](N)→ Hom

(
N

i(M) +N [J ]
, N [J ]

)
σ 7→ (ϕσ : [n] 7→ σ(n)− n)

is a group isomorphism, and that

Hom

(
N

i(M) +N [J ]
, N [J ]

)
∼= Hom

(
sat(N)

sat(M)
, tor(N)

)
which highlights the commutativity of Autsat(M)(sat(N)). It is an elementary fact from
group theory that, whenever we have we have an exact sequence of groups 1→ A→ G→
Q → 1 with A abelian, the quotient Q acts of A by conjugation. Tracking down this
action along the isomorphisms described above, one sees that in our case

1→ Hom

(
sat(N)

sat(M)
, tor(N)

)
→ AutM (N)→ Auttor(M)(tor(N))→ 1

the action of Auttor(M)(tor(N)) on Hom(sat(N)/sat(M), tor(N)) is just composition on
the left.

Example 7.2. Let R = Z, J = p∞, T = (Z[p−1]/Z)2, M = Z3 and N = Γ = (Z[p−1])3⊕T
(i.e. a maximal (J, T )-extension of M , hence normal). Notice that tor(M) = 0, sat(M) =
M ⊕ T , tor(Γ) = T and sat(Γ) = Γ. Then

Hom
(

sat(N)
sat(M) , tor(N)

)
∼= Mat2×3(Zp) and Auttor(M)(tor(N)) ∼= GL2(Zp)

and the action described above is just matrix multiplication on the left.
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8. Kummer theory for elliptic curves

Let E be an elliptic curve over a number field K, with fixed algebraic closure K. Let
R = EndK(E) be the ring of K-endomorphisms of E and let J be the ideal filter

∞ := {I / R | n ∈ I for some n ∈ Z>0}

that we called n̂ last time (just a change of notation).
Let T := E(K)[∞] = E(K)tors be the “absolute torsion” of E, which is isomorphic to

(Q/Z)2 as an abelian group. A theorem of Lenstra [2] states that E(K) and T are injective
R-modules; thus in particular they are J-injective for any ideal filter J of R, so we can
talk about the theory of (J, T )-extensions of any R-submodule M of E(K). It is not hard
to see that

Γ :=
(
M :E(K) J

)
is a maximal (J, T )-extension of M .

We want to study the tower of field extensions K ⊆ K(T ) ⊆ K(Γ). The classical exact
sequence of Galois groups embed into the “important exact sequence” discussed in the
previous section via its action on the points of Γ:

1 Gal(K(Γ) | K(T )) Gal(K(Γ) | K) Gal(K(T ) | K) 1

1 Hom
(

Γ
M+T , T

)
AutM (Γ) AutM [∞](T ) 1

κ ρ τ

and we can use this to study our field extensions. Notice that the action of AutM [∞](T )
on Hom(Γ/(M + T ), T ) restricts to an action of Im(τ) on Im(κ).

It turns out that there is an exact sequence of abelian groups

0→
(
sat(M) :sat(E(K)) J

)
sat(M)

→
⋂

f∈Im(κ)

ker(f)→ H1(Im(τ), T ) .

One can combine this with a duality theorem that you can find in the notes for my previous
talk (but that I did not have time to discuss last time) to obtain the following:

Theorem 8.1. Suppose that

(1) The group
(
sat(M) :sat(E(K)) J

)
/sat(M) has finite exponent d;

(2) The group H1(Im(τ), T ) has finite exponent n;
(3) The subring of End(T ) generated by Im(τ) contains m · End(T ).

Then Im(κ) contains dnm ·Hom(Γ/(M + T ), T ).

Idea of proof. It follows from (1) and (2) that
⋃
f∈Im(κ) ker(f) has finite exponent. If Im(κ)

was a module over End(T ) (with its natural action by composition on the left), this fact to-
gether with the aforementioned duality result would imply that dn·Hom(Γ/(M+ T ), T ) ⊆
Im(κ). In general this is not the case, but Im(κ) is at least an Im(τ)-module, and by lin-
ear extension it is also a module over the subring of End(T ) generated by Im(τ). If this
subring is “close to” the whole End(T ), then Im(κ) is “close to” being an End(T )-module,
and we can get a similar conclusion. �

Integers d, m and n as above always exist. This result was previously known only in
some cases, namely if R = Z ([3] or [4]) or R is a Dedekind domain [1].
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