A CATEGORY OF DIVISION MODULES

SEBASTIANO TRONTO

ABSTRACT. Let G be a commutative algebraic group over a field K of characteristic
zero. We are interested in studying the smallest field extension of K that contains
the coordinates of all the points of G over some algebraic closure of K that have a
multiple in G(K), or other similar field extensions. In order to do so we first need to
understand certain properties of G as a module over the ring of K-endomorphisms of
G, and in particular its “division extensions”. Using the theory of J-injective modules
introduced in my previous talk we will construct a category that in a sense describes all
such extensions.

1. MOTIVATION

Let K be a field of characteristic 0 and fix an algebraic closure K of K. Let G be
a commutative algebraic group over K, let R be a subring of Endg(G) and let J be
a complete ideal filter of R (as defined in my previous talk). Let M C G(K) be an
R-submodule of G(K'). We are interested in studying the R-module

.= <M ‘G(R) J)
from a purely algebraic point of view first, and from a number theoretical perspective (i.e.

studying the tower of extensions K C K(I'[J]) C K(I)) later.
If for example G is an abelian variety, R = Z and J = p*> we have

= (zp )™ o GE)p™)
where rkz M is the rank of a free part of M, or if you prefer the dimension of the Q-vector
space M ®z Q. It is clear from this description that I" depends in part on the R-module
structure of M, but also on G: we know from last time that (Z[pil])rkzM is a J-hull of

M, and as such it depends only on R, M and J; but there is no way to recover the torsion
part G(K)[p] from the data (R, M, J) without any information on G.

In order to continue our “purely algebraic” study of the R-module I' we will fix a suitable
R-module T and declare it to be our “maximal torsion” G(K)[.J]. Under certain conditions,
which hold for example when G is an elliptic curve, the module I' is then determined by
the data (R, M, J,T). However, in the general algebraic setting, the resulting algebraic
theory bears interesting similiraties with Galois theory of field extensions.
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2. THE CATEGORY OF (J,T)-EXTENSIONS

Fix for this section a unitary ring R, a complete ideal filter J of R and a J-torsion and
J-injective left R-module 7'

Definition 2.1. A T-pointed R-module is a pair (M, s), where M is a left R-module and
s: M[J] < T is an injective homomorphism.

If (L,r) and (M, s) are two T-pointed R-modules, we call an R-module homomorphism
p: L — M a homomorphism or map of T-pointed R-modules if s o <p|M[J] =r.

In the following we will sometimes omit the map s from the notation and simply refer
to the T-pointed R-module M if clear from the context or if we don’t need to refer to it
explicitly.

Remark 2.2. A map ¢ : (L,r) — (M,s) of T-pointed R-modules is injective on L[J].
Indeed s o ‘P|L[J] = r is injective, so 90|L[J} must be injective as well.

Definition 2.3. Let (M, s) be a T-pointed R-module. A (J,T)-extension of (M,s) is
a triple (N,1i,t) such that (IV,t) is a T-pointed R-module and ¢ : M — N is a map of
T-pointed R-modules and a J-extension.
If (N,i,t) and (P, j,u) are two (J,T')-extensions of (M,s) we call a homomorphism of
T-pointed R-modules ¢ : N — P a homomorphism or map of (J,T)-extensions if poi = j.
We denote by JT(M, s) the category of (J,T)-extensions of (M, s).

In the following we will sometimes omit the maps i and ¢ from the notation and simply
refer to the (J,T')-extension N of M if clear from the context or if we don’t need to refer
to them explicitly.

We can immediately see some similarities between (J, T')-extensions and field extensions:
every map is injective, and every surjective map is an isomorphism.

Lemma 2.4. Every map of (J,T)-extensions is injective.

Proof. Let (N,i,t) and (P,j,u) be (J,T)-extensions of the T-pointed R-module (M, s)
and let ¢ : N — P be a map of (J,T)-extensions. Let n € kerp. Since i : M < N is a
J-extension there is I € J such that In C i(M). But since j : M < P is injective and
©(In) = 0, we must have In = 0, hence n is J-torsion. But since ¢ is a map of T-pointed
R-modules by remark we have n = 0. ([l

Corollary 2.5. Every surjective map of (J,T)-extensions is an isomorphism.

Proof. Let (N,i,t) and (P,j,u) be (J,T)-extensions of the T-pointed R-module (M, s)
and let ¢ : N — P be a map of (J,T')-extensions. In view of Lemma it is enough to
show that if ¢ is an isomorphism of R-modules, then its inverse ¢~ : P = N is also a

map of (J, T)-extensions. But the fact that ¢! oj =i follows directly from ¢ oi = j and
t=wuo @|1§[1J] = u follows from u o @‘N[J} = t. .

Proposition 2.6. Let (M, s) be a T-pointed R-module, let (N, i,t) be a (J,T)-extension of
(M, s) and let (P, j,u) be a (J,T)-extension of (N,t). Then (P, joi,u) is a (J,T)-extension
of (M, s).

Proof. The joi is clearly a map of T-pointed R-modules, so we are left to check that it is
a J-extension. Since J is complete (see my previous talk), and omitting the map ¢ and j
from the notation for simplicity, we have

(M:pJ)y=(M:pJ):pJ)2(M:xyJ):pJ)=(N:pJ)=P
so (M :p J) = P, which shows that joi: M — P is a (J,T)-extension. O
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3. PusHoutT OF T-POINTED R-MODULES

Given a T-pointed R-module (M, s), there are two interesting T-pointed R-modules
associated with it: its torsion (M]J],s), which we will sometimes denote by tov(M,s),
and its saturation sat(M, s), which can be defined as the pushout of R-modules

M[J] —M 5 M

ls lﬁ]\/f
T —— sat(M)

It can be seen that the bottom map surjects onto sat(M)[J], and its inverse sat(s) :
sat(M)[J] — T is the structural map of the T-pointed R-module sat(M). We will call any
T-pointed R-module (M, s) such that s : M[J] — T is an isomorphism (or equivalently
that is isomorphic to its saturation) saturated.

It would be interesting to relate the (J,T") extensions of a T-pointed R-module to those
of its torsion and its saturation.

For the torsion, the process is relatively straightforward: we just need to consider the
J-torsion submodule of an extension. This can be seen as a pullback operation.

For the saturation it seems natural that we make use of a pushout of some sorts along
the map M < sat(M): after all, the saturation itself is a pushout construction. This is
possible, but the construction of a pushout in the category of (J,T)-extensions requires
some caution: as is the case in the category of field extensions, the pushout of two (J, T)-
extensions does not always exist.

Proposition 3.1. Let (L,r), (M, s) and (N,t) be T-pointed R-modules and let f : L — M
and g : L — N be maps of T-pointed R-modules. Assume that:
(1) f is pure, that is (f(L) :m J) = f(L) + M[J], and that
(2) f is injective.
Then the pushout (P,i,7) of f along g exists in the category of T-pointed R-modules.
Moreover, the pushout map i : M — N 1is injective if g is injective, and the pushout
map j: M — N is injective if [ is injective.

Sketch of proof. The idea is to take the pushout of f along g as maps of R-modules and
then further identify those torsion elements that map to the same element in T'.

More explicitly, let P’ be the pushout of f along g as maps of R-modules and write it
as (M @ N)/S where S = {(f(\),—g()\)) | A € L}. Let P be the quotient of P’ by the
submodule

K := ({[(m,—n)] | for all m € M[J], n € N[J] such that s(m) = t(n)}) .

One key step for giving a map P[J] < T is showing that P’[J] is generated by the images
of M[J] and N[J], and it is in this step that the two assumptions on f are used. After
doing so, it is relatively straightforward to show that P is the required pushout and that
the injectivity of maps is preserved. O

Remark 3.2. It is easy to see that, in the situation of Proposition if (N,i,t) is a
(J,T')-extension of (L,r) then the pushout is a (J, T')-extension of (M, s).
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The following example shows the necessity of the “purity” condition.

Example 3.3. Let R = Z, J =2°, T = Z[}|/Z, L = Z and M = N = 3Z. The
R-modules L, M and N are T-pointed via the zero map, since their J-torsion is trivial.
Let f: L < M and g : L — N be the natural inclusions and notice that they are maps
of T-pointed R-modules that are not pure. We claim that the pushout of f along g does
not exist in the category of T-pointed R-modules.

To see this, assume by contradiction that (P, u) is the pushout of f along g and consider
the T-pointed R-module (%Z ®Z/2Z, z), where z : Z/27Z — T is the only possible injective
map. Consider the diagram

L1
g l’t k
N —P

where the maps k and [ are defined as

k: 32 — lzeo L 1: iz - lzeo

and
: = (30 SO

Notice that k and [ are maps of T-pointed R-modules such that ko f = [l o g. Then by
assumption there exists a unique map of T-pointed R-moduels ¢ : P — %Z @ Z /27 that
makes the diagram commute. In particular we have ¢(j(3)) # ¢(i(3)), which implies that
4(3) # i(3). But since 2j(3) = j(g(1)) = i(f(1)) = i(3) we have that ¢ := j(3) —i(3) is a
2-torsion element of P, and we must have u(t) = 3.

Consider now the map &' : M — %Z @ 7 /27 mapping % to (%, 0), just as [ does. This
is again a map of T-pointed R-modules such that k¥’ o f = [ o g, so there must be a map
of T-pointed R-modules ¢’ : P — %Z @ Z/27Z that makes this new diagram commute.
But such a map ¢’ must map ¢ to 0, because ¢'(j(3)) = (3,0) = ¢/(i(3)). But then the
diagram of structural maps into T’

Sh

N

27
would not commute, which is a contradiction. This proves our claim.

Open question 1. Is there a larger category, analogous to that of finite algebras over
a field, in which all pushouts of (J, T')-extensions exist?
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4. PULLBACK AND PUSHFORWARD FUNCTORS

As stated at the beginning of the section, our goal is to relate the (J, T')-extensions of
a T-pointed R-module M to those of its torsion tot(M) and its saturation sat(M). It
is however interesting to study two more general contructions, namely the pullback and
pushforward functors.

Let ¢ : (L,r) — (M,s) be a map of T-pointed R-module. For any (J,T')-extension
(N,i,t) of (M, s) we can define the pullback

("N, @i, ¢"t):= ((i(SO(L)) N S)s il t|(¢*N)[J]>

which, as one can easily see, is a (J,T')-extension of (L,r). One can define the pullback
©*f of amap f: N — P of (J,T)-extensions of (M,s) simply by restricting it to ¢* N,
which is a submodule of N. In this way ¢* becomes a functor

@ IT(M, s) = JZ(L,7)

which we call the pullback along .
If ¢ is pure and injective we can moreover define, for every (J, T)-extension (N,i,t) of
(L,7), the pushforward (p«N, pxi, p«t) via the pushout diagram
(L7 T) L) (Ma S)
lz’ lcp*i
(N, t) —— (@uNN, put)
One can easily see that (@, @.i, pit) is a (J,T)-extension of (M,s), and using the

universal property of the pushout one can define a map of (J, T')-extensions ¢, f : ¢, N —
s P for every map of (J, T)-extensions f: N — P. In this way we get a functor

©s 1 JE(L, ) = JE(M, )
which we call the pushforward along .

Theorem 4.1. Let ¢ : (L,r) — (M,s) be an injective and pure map of T-pointed R-
modules. Then the functor o, is left adjoint to ©*.
Now we can finally talk about the two particular cases that are most interesting for us.
Let M be a T-pointed R-module. Denoting by
ty: M[J] — M
the inclusion map, we call the pullback along this map tj, the torsion functor, and we

denote it by tot.
The inclusion of M into its saturation

sy M o— sat(M)

is injective and pure, thus we may consider the pushforward (sys).. We call this functor
the saturation functor, and we denote it by sat.



6 SEBASTIANO TRONTO

5. MAXIMAL (J,T)-EXTENSIONS

Maximal (J, T)-extensions are the analogue of the algebraic (or separable) closure in
field theory. The main result of this section is the construction of a maximal (J,T)-
extension for any T-pointed R-module, and we achieve this by first constructing such an
extension for its torsion and its saturation.

Definition 5.1. A (J,T)-extension I' of the T-pointed R-module M is called mazimal if
for every (J,T)-extension N of M there is a map of (J,T)-extensions ¢ : N < I.

The very definition of T-pointed R-module already provides a maximal (J, T')-extension
for any J-torsion module.

Lemma 5.2. Let (M,s) be a T-pointed R-module. If M is J-torsion, then (T, s,idr) is
a mazimal (J,T)-extension of (M, s).

Proof. If (N,i,t) is a (J, T')-extension of M, then in particular we have
N=(iM):nJ)= (0500 ) :nJ) S((0:nJ):nJ)=(0:5J)=N[J]
so N is J-torsion. Then t : N — T satisfies t o ¢ = s and idpot = ¢, so it is a map of

(J, T)-extensions. O

The existence of a maximal (J,T)-extension of a saturated module comes from the
existence of a J-hull.

Lemma 5.3. Let (M, s) be a saturated T-pointed R-module and let v : M — T be a J-hull
of M. Then (',1,7), where T = so L|]T41[J], is a mazimal (J,T)-extension of (M,s).

Finally we can construct a (J, T)-extension of any T-pointed R-module using the last
two results.

Theorem 5.4. Every T-pointed R-module M admits a mazimal (J,T)-extension. More-
over, for any maximal (J,T)-extension T' of M the following hold:
(1) If T" is another (J,T)-extension of M, then T = T" as (J,T)-extensions.
(2) T is saturated.
(8) T is J-injective.
(4) If (N,i,t) is a (J,T)-extension of M and ¢ : N — T is a map of (J,T)-extensions,
then (T', ¢, 7) is a mazimal (J,T)-extension of (N,t).

Idea of proof. Let T' be a maximal (J, T)-extension of the saturation of M. O
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6. A GLIMPSE OF (GALOIS THEORY
Fix a T-pointed R-module (M, s) and a maximal (J,T')-extension (I',¢,7) of (M, s).

If (N,i,t) is a (J,T)-extension of (M, s), we will denote by Auty (V) the group of R-
module automorphisms o of IV such that ocoi = i. Notice that these are not automorphisms
of the (J,T')-extension (N, i,t), because we do not require that to o), = s.

In a similar way we let Embys(N,T) denote the set of injective R-module maps f :
N < T such that foi = . Again, these are not necessarily maps of (J,T)-extensions,
but one can see that given f € Emby/(N,I') the map z := 7o fly;; : N[J] < T is
such that (N,i,z2) is a (J, T)-extension of (M,s) and f : (N,i,z) — (I',¢,7) is a map of
(J, T)-extensions.

Definition 6.1. A (J,T')-extension i : M < N normal if every element of Emb,(N,T")
has the same image.

Using the fact that for any two f, g € Emby,(N,T') and any n € N we have f(n)—g(n) €
I'[J], one can show that every saturated extension is normal. In particular, every maximal
(J, T)-extension is normal.

We can define a (right) action of Autp/(N) on Embys(N,T') by composition: if o €
Autps(N) and f € Embys(N,I') then f oo is again an elment of Emby/(N,T"). This
action is clearly free, that is if for 0,0’ € Autp/(N) and (z, f) € Emby (N, T") we have
(2,f) 0= (zf) 0, then ¢ = o', because f is injective.

Proposition 6.2. A (J,T)-extension N of M is normal if and only if the action of
Autpr(N) on Embys(N,T) is transitive.

Proof. Assume that N is normal and let f,g € Emby/(N,T"). Since f and g both factor
through the inclusion f(N) < I, we can consider the automorphism of N given by
f~1tog, which is in Autyp/(N). Then clearly fo (f~!og) = g, and since 7 o g\N[J] =w
and 7o f|N[J] =z we have zo (f~!o g)‘N[J} = w, showing that the action is transitive.
If the action is transitive and fix f € Emb,/(N,T'), every other element g of Emby, (N, T")
is of the form f o o for some o € Auty/(N), so it has the same image as f. O

Open question 2. How close can we actually get to a “Galois theory” of (J,T)-
extensions? Related to the previous first open question, can we find a Galois category
whose subcategory of connected objects is exactly our category of (J, T)-extensions?



8 SEBASTIANO TRONTO

7. AN IMPORTANT EXACT SEQUENCE
The key property of normal extensions for us is the following:

Lemma 7.1. If (N,i,t) is a normal (J,T)-extension of (M,s), the restriction map
AutM(N) — AutMM (N[J])

18 surjective.

Proof. Let o € Auty(N[J]). Notice that (N,i,t 0 o) is also a (J, T)-extension of M,

and let f: (N,i,t) — (I',¢,7) and g : (N,i,to0) — (I',¢,7) be maps of (J, T')-extensions.

Since N is normal we have f(N) = g(N), thus f~! o g is an automorphism of N that

restricts to o. O

The kernel of the surjective map above consists exactly of those automorphisms of
N that restrict to the identity on ¢(M) 4+ N[J], and with a slight abuse of notation
we may denote it by Autysynij (N). One can see that the restriction along the map
sy : N — sat(V) induces an isomorphism

Autgaqary(sat(N)) = Autprgnp (V)
and so for every normal (J, T)-extension N of M we have an exact sequence
1— Autﬁa{(M) (SCL{(N)) — AutM(N) — Aut{at(M(fOt(N)) —1

Which relates the autormism group of N with that of its torsion and its saturation.

Moreover, one can show that the map

is a group isomorphism, and that

o (st v ) = o (G o9)

which highlights the commutativity of Autsans)(sat(N)). It is an elementary fact from
group theory that, whenever we have we have an exact sequence of groups 1 - A - G —
@ — 1 with A abelian, the quotient ) acts of A by conjugation. Tracking down this
action along the isomorphisms described above, one sees that in our case

sat(/V
1 — Hom <5at((M)),t0t(N)> — Autpy (N) — Autge(ar)(tor(N)) — 1
the action of Auty.(ar)(tor(N)) on Hom(sat(N)/sat(M), tor(N)) is just composition on
the left.

Example 7.2. Let R=27,J =p>®, T = (Z[p~']/Z)?>, M =Z3and N =T = (Z[p~'])3@T
(i.e. a maximal (J, T)-extension of M, hence normal). Notice that tov(M) = 0, sat(M) =
MaT, tor(I') =T and sat(I') = T'. Then

Hom (jgf((M)) m(N)) > Matoxs(Z,) and  Autiyy (tor(N)) = GLo(Z,)

and the action described above is just matrix multiplication on the left.
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8. KUMMER THEORY FOR ELLIPTIC CURVES

Let E be an elliptic curve over a number field K, with fixed algebraic closure K. Let
R = Endg (F) be the ring of K-endomorphisms of E and let J be the ideal filter

o0:={I<R|ne€l for somen € Z-g}

that we called 7 last time (just a change of notation).

Let T := E(K)[oo] = E(K )tors be the “absolute torsion” of E, which is isomorphic to
(Q/Z)? as an abelian group. A theorem of Lenstra [2] states that E(K) and T are injective
R-modules; thus in particular they are J-injective for any ideal filter J of R, so we can
talk about the theory of (J, T')-extensions of any R-submodule M of E(K). It is not hard

to see that
.= (M 'B(R) J)

is a maximal (J, T)-extension of M.

We want to study the tower of field extensions K C K(T') C K(I'). The classical exact
sequence of Galois groups embed into the “important exact sequence” discussed in the
previous section via its action on the points of I':

1 —— Gal(K(T) | K(T)) — Gal(K(T) | K) —— Gal(K(T) | K) — 1

[ Jp j

1 —— Hom (37, 7) » Autpr(T) —— Aut g (T) — 1

and we can use this to study our field extensions. Notice that the action of Aut e (T')
on Hom(I'/(M + T'),T) restricts to an action of Im(7) on Im(k).

It turns out that there is an exact sequence of abelian groups

(5Clt(M) ‘sat(E(K)) J)
sat(M)

ﬂ ker(f) — H'(Im(7),T).
f€lm(k)
One can combine this with a duality theorem that you can find in the notes for my previous
talk (but that I did not have time to discuss last time) to obtain the following;:

Theorem 8.1. Suppose that
(1) The group (sat(M) sy p(k)) J) /sat(M) has finite exponent d;
(2) The group H'(Im(7),T) has finite exponent n;
(3) The subring of End(T) generated by Im(7) contains m - End(T).
Then Im(k) contains dnm - Hom(T'/(M +T),T).

Idea of proof. 1t follows from (1) and (2) that U pepy(,) ker(f) has finite exponent. If Im(x)
was a module over End(7") (with its natural action by composition on the left), this fact to-
gether with the aforementioned duality result would imply that dn-Hom(T'/(M+ T),T) C
Im(x). In general this is not the case, but Im(x) is at least an Im(7)-module, and by lin-
ear extension it is also a module over the subring of End(7") generated by Im(7). If this
subring is “close to” the whole End(7T"), then Im(k) is “close to” being an End(7)-module,
and we can get a similar conclusion. O

Integers d, m and n as above always exist. This result was previously known only in
some cases, namely if R =Z ([3] or [4]) or R is a Dedekind domain [IJ.
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