A GENERALIZATION OF INJECTIVE MODULES

SEBASTIANO TRONTO

ABSTRACT. The underlying abelian group of the field of rational numbers Q has an
interesting property: it is divisible, which means that for every x € Q and every positive
integer n there is a y € Q such that ny = x. On the other hand, if we only care about
dividing by the powers of a certain prime, then also the underlying abelian group of the
ring Z[p~'] has a similar property: it is p-divisible, that is for every = € Z[p~'] there is
Yy € Z[pil] such that py = x. If one tries to generalize these concepts to modules over a
general (associative, unitary) ring R, things may not work so well, among other things
due to the possible presence of zero-divisors in the base ring. There is however a natural
(or categorical) concept that works well over any ring, which is injectivity. Indeed an
abelian group is divisible if and only if it is injective as a Z-module. What is in this
setting a suitable generalization for p-divisibility? Is there a more general property that
includes divisibility and p-divisibility as special cases, and that also works well for R-
modules? In this talk I will propose a definition that provides a positive answer to the
two questions above. If time permits I will also show an analogue of Morita duality using
this more general definition.

1. DIVISIBLE ABELIAN GROUPS AND INJECTIVE MODULES

Consider the abelian group Q. If x € Q and n € Z \ {0}, then there is y € Q such that

ny = z; namely, we can take y = 7. This holds also, for example, for the abelian group

Q/Z. In general, an abelian group satisfying this property is called divisible.
Definition 1.1. An abelian group A is called divisible if for every x € A and every
n € Z\ {0} there is y € A such that ny = x.

For modules over a general ring R this definition might not scale so well. For example,
taking R = Z x Z, the R-module M = Q x Q (with action of R given by multiplication
component-wise) does not satisfy the property above for every x € M: if x = (1,1) and
r = (0,1) then there is clearly no y € M such that ry = x.

There is however a property that plays the same role in many circumstances.

Definition 1.2. An R module @ is called injective if for every injective R-module ho-
momorphism ¢ : M — N and every R-module homomorphism f : M — @ there is an
R-module homomorphism g such that go¢ = f.

M%Q

For Z-modules being injective is equivalent to being divisible.
Proposition 1.3. A Z-module is injective if and only if it is divisible as an abelian group.

Proof. Let A be an abelian group and assume that it is injective as a Z-module. Let z € A
and n € Z\ {0}. Consider the inclusion i : nZ — Z and the map f : nZ — A which sends
n to . Then since A is injective f extends to a map ¢ : Z — A which sends n to x, so
letting y = ¢g(1) we have ny = x, as required.
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Assume now that A is divisible and let J : M < N be and injective homomorphism
of abelian groups and f : M — A any homomorphism. In order to extend f to a map
g: N — A we will use Zorn’s Lemma. Let S be the set of pairs (N', ¢) with N” a sugroup
of N containing M and ¢ a homomorphism N’ — A that extends f. The set S admits a
partial order

(N, ) < (N",¢) < N' CN"and 9|y, =¢
Every chain in S has an upper bound. Namely, if C' C S is a chain, i.e. a totally ordered
subset of S, then we can take N’ to be the union of all N’ for (N, ¢) € C and we let
o:N — A
x — (), if there is any (N, ¢) € C with z € N’

which is well-defined because C is totally ordered (which means that if  belongs to N” and
to N” for (N',¢) € C and (N”,4) € C, then either (N', @) < (N"9) or (N”,¢) < (N',4),
and in any case ¢ and 1 are compatible on x).

By Zorn’s lemma there is then a maximal element (N',¢) € S, and we want to show
that N/ = N, so that f extends to the whole N. Assume that N’ # N and let z € N\ N;
if we manage to extend ¢ to ¢4 : N’ + (x) — A this will yield a contradiction with the
maximality of (N’, ), and thus we would be able to conclude that indeed N’ = N.

If () N N’ = 0, we may simply define ¢, (z) = 0. Otherwise (x) N N’ contains some
nx # 0 for some positive integer n which we may assume minimal with respect to this
property. Since A is divisible there is y € A such that ny = ¢(nz), and one easily checks
that defining ¢4 as ¢y (x) = y is compatible with ¢. As explained above, this concludes
the proof. O

For a prime number p, the abelian groups Z[p~!] and Z[p~!]/Z have a property similar
to the divisibility of Q and Q/Z, but only if we restrict to dividing by (powers of) p.

Definition 1.4. Let p be a prime number. An abelian group A is called p-divisible if for
every x € A there is y € A such that py = x.

Is there any property of R-modules that generalizes p-divisibility, in a way similar to
how injectivity generalizes divisibility?

2. DIVISION IN MODULES

Fix for this and the following sections a unitary ring R.

Definition 2.1. If M C N are left R-modules and I is an ideal of R, we call the R-
submodule of NV
(M:yI):={zeN|IztC M}
the I-division module of M (in N ).
Notice that (M :x 0) = N and (M :xy R) = M. If I' O I we have (M :x I') C (M :x I).
In general we might want to work with (possibly infinite) unions of division modules.
For example if R = Z we are interested in working with

U (M N (Pk))
k>0
or with
U M oy (n)
n=1

So it makes sense to give the following definition.
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Definition 2.2. An ideal filter of R is a non-empty set J of two-sided ideals of R such
that:

(1) fI,I" e Jthen INTI' € J and

(2) If I € J and I’ < R contains I, then I’ € J.

If J is an ideal filter of R and M C N are R-modules, we let

(M:y J):=J (M)
IeJ
which we call the J-division module of M in N, and

M[J] == (0:pr J)

which we call the J-torsion submodule of M.

Notice that if the zero ideal belongs to an ideal filter J, then every ideal of R belongs
to J, that is J is the maximal ideal filter. We will denote this ideal filter by 0, and we will
denote the minimal ideal filter {R} by 1. We have (M :x 0) = N and (M :x R) = M,
and if J' C J we have (M :y J') C (M :n J).

Given a set of ideals S of R, we may consider the ideal filter J generated by S, that is
the minimal (with respect to inclusion) ideal filter of R that contains S. If S = {I} we
have (M N J) = (M N I).

Example 2.3. For any unitary ring R, there are two interesting examples: the ideal filter
generated by the powers of a given prime number p

p*:={I<R|IDp"R for some n € N}
and the one generated by all non-zero integers
n:={I<R|I2nR for some n € Ny} .

Notice that some power of p is equal to 0 in R (respectively n = 0 for some n € Ny~0)
then p™ (resp. n) is simply the set of all two-sided ideals of R.

Thus ideal filters allow us to consider the possibly infinite unions of division modules
mentioned above. We would also like to have a way to distinguish those ideal filters that
describe a complete iteration of the division process, as p> and 7 do and (n) or (p¥) do
not. We propose two definition that might capture this concept, and we show that, under
certain condition, one is stronger than the other.

Definition 2.4. We call an ideal filter J of R:
o Complete if for every left R-module N and every submodule M C N we have

(M:yJ):nJ)=(M:NJ).
e Product-closed if for any I,I' € J we have II' € J.

Proposition 2.5. Let J be a product-closed ideal filter of R. If every ideal in J is finitely
generated, then J is complete.

Proof. Let J be a product-closed ideal filter of R and let M C N be left R-modules. The
inclusion (M :nx J) € (M :n J) :n J) is always true, so in order to show that equality
holds we need to prove the other inclusion. Let x € N be such that there is I € J with
Iz C (M :n J). Let {y1,...yn} be a set of generators for I. Then for every i = 1,...n
there is an ideal I; € J such that Lyy;x# € M. By definition of ideal filter we have
I' == N, I; € J and since J is product-closed we have I'T € J. But we also have
I'Iz C M, which shows that J is complete. ]
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The ideal filters introduced in Example [2.3| are both product-closed. If, for example, R
is Noetherian, then they are also complete.

3. J-INJECTIVE MODULES
Fix for this section a unitary ring R and a complete ideal filter J of R.

Definition 3.1. An injective R-module homomorphism i : M < N such that (i(M) :x J) =
N is called a J-extension.

We can finally give our definition of J-injective module. In words, one can say that an
injective module is one that admits extensions of maps into it along any injective map. A
J-injective module is one that admits extensions of maps into it along J-extensions.

Definition 3.2. A left R-module Q) is called J-injective if for every J-extension i : M — N
and every R-module homomorphism f : M — @ there exists a homomorphism g : N — @
such that goi = f.

M%
A

(J-extension) z\[ //g;

-,

N

Notice that in case J = 0 the definition of J-injective module coincides with that of
injective module, because any injective homomorphism is a 0-extension. Moreover, if J' is
an ideal filter of R such that J’ C J, then a J-injective module is also J'-injective, because
every .J'-extension is also a .J-extension.

The following Proposition is an analogue of the well-known Baer’s criterion in the
classical case of injective modules, and the proof is almost identical to the classical case.

Proposition 3.3. A left R-module Q is J-injective if and only if for every I € J and every
R-module homomorphism f : I — Q there is an R-module homomorphism g : R — @Q that
extends f.

Proof. The “only if” part is trivial, because any two-sided ideal of R is also a left R-
module. For the other implication, let i : M — N be a J-extensions and let f : M — Q
be any R-module homomorphism. By Zorn’s Lemma there is a submodule N’ of N and an
extension ¢’ : N — Q of f to N’ that is maximal in the sense that it cannot be extended
to any larger submodule of N. If N’ = N we are done, so assume that N’ # N and let
reN\N.

Let I be the two-sided ideal of R generated by {r € R | rx € N'}. Since i(M) C N’ and
(i(M) :n J) = N there is I' € J such that I’z C N’, which implies I’ C I, so also I € J.
By assumption the map I — @ that sends y € I to ¢'(yz) extends to a map h : R — Q.
Since ker(R — Rz) is contained in ker(h), the map h gives rise to a map b’ : Rx — Q by
sending rx € Rz to h(r). By definition the restrictions of ¢’ and A’ to N’ N Rz coincide, so
we can define a map ¢” : N'+ Rx — @ that extends both. This contradicts the maximality
of ¢/, so we conclude that N’ = N. O

Remark 3.4. One can adapt the proof or Proposition to show that an abelian group
is p-divisible if and only if it is p>°-injective (see Example [2.3)) as a Z-module.

Let J = 0 be the maximal ideal filter of R and assume that J' = J \ 0 is an ideal
filter; this amounts to say that no two non-zero ideals of R have trivial intersection. Using
Proposition [3.3] one can easily show that an R-module @ is J-injective if and only if it is
J'-injective. Indeed, one implication holds, as remarked above, because J C J’, and for
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the other it is enough to notice that the only map 0 — @) can always be extended to the
zero map on R.

One advantage of using J' instead of .J is that the J'-torsion submodule may be different
from M[0] = M.

Example 3.5. Let M be an abelian group, let p be a prime and let J = p*™ be the ideal
filter of Z introduced in Example Then the localization M[p~!] is a J-injective Z-
module. Indeed if i : N <+ P is a J-extension and f : N — M[p~!] is any homomorphism

then for every = € P there is k € N such that p*z € N, and one can define g(z) := f(iiz‘r).

It is easy to check that g is then a well-defined group homomorphism such that goi = f.

4. INJECTIVE HULLS AND J-HULLS

Definition 4.1. A map of R-modules ¢ : M — N is called an essential extension if for
every nonzero submodule P of N we have P Ni(M) # 0.

It is a well-known fact of commutative algebra that every R-module M admits an
injective hull ¢+ : M < I', which is an essential extension such that I" is injective. Such an
extension, which is unique up to a not-necessarily-unique isomorphism that is the identity
on M, may be as well characterized by either of the following two properties:

(1) It is the largest essential extension of M, that is to say if i : M < N is an essential
extension then there is an (injective) R-module homomorphism j : N < IT" such
that 104 = j (the injectivity of j follows from the injectivity of + and the fact that
i: M <— N is an essential extension).

(2) It is the smallest injective extension of M, that is to say if i : M <— N is an
injective R-module homomorphism and N is injective, then there is an injective
R-module homomorphism j : I' < N such that j o« = i (the existence of a map
I' = N that commutes with ¢ follows from the injectivity of N, but the fact that
this map is injective does not).

As an example, the standard map Z™ — Q" is an injective hull of the Z-module Z".

There is an analogue construction for J-injectivity.

Definition 4.2. Let J be a complete ideal filter of R and let M be a left R-module. A
J-extension ¢ : M — § is called a J-hull of M if it is an essential extension and € is
J-injective.

The following theorem is not a replacement for the classical one, since it relies on it.

Theorem 4.3. Every left R-module M admits a J-hull, which is unique up to a not-
necessarily-unique isomorphism that is the identity on M.

Sketch of proof. Let ¢ : M — T" be an injective hull of M and let Q := (¢«(M) :r J). One
can show that ¢ maps M into 2 and ¢ : M — § is indeed a J-hull of M, and that for any
other J-hull // : M < Q' there is an isomorphism j : Q = Q' such that jo: = /. O

Example 4.4. Let M be an abelian group, let p be a prime and let J = p*> be the ideal
filter of Z introduced in Example Write M as
k
M=17"oPZ/p"Z o Mn
i=1
where n is a positive integer coprime to p and the e;’s are suitable exponents. Let

= (Zlp™')" @ (Zlp™)/2)" & M[n]
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and
L: M — r

(z, (s; mod p%);,t) — (%, <p‘2i mod Z) ‘ ,t)

)

Then ¢ : M — T'is a J-hull. To see this it is enough to show that f : Z" < (Z[p~!])" and
gi : Z)p%7 < Z[p~'|/Z for every i = 1,...,k are J-hulls, and that M][n] is J-injective,
being trivially an essential extension of itself. The assertions about f and M|[n] follow
from Example noticing that multiplication by p is an automorphism of M [n] and that
Z" — (Z[p~'])" is an essential J-extension.

So we are left to show that for every positive integer e the map g : Z/p°Z < Z[p~']/Z de-
fined by (s mod p®) — (Z% mod Z) is a J-hull. It is a J-extension, because the Priifer group

Z[p~1/Z itself is J-torsion, and it is also essential because every subgroup of Z[p~']/Z is
of the form I%Z, so it intersects the image of ¢g in Z.

Finally, Z[p~!]/Z is divisible as an abelian group, so in particular it is J-injective, since
in this case it is equivalent to being p-divisible.

L
pmin(e,d)

We can draw an interesting parallel between the J-hull of an R-module M and the
algebraic closure k of a field k. Indeed k is at the same time the smallest algebraically
closed extension and the largest algebraic extension of k. Similarly to J-hulls, an algebraic
closure is unique up to a not-necessarily-unique isomorphism that fixes the base field.

5. MORITA DUALITY
Consider the following well-know fact about vector spaces and linear maps.

Proposition 5.1. Let V be a finite dimensional vector space over a field k and let
fi,--sfn V. = k be linear functions. If g : V. — k is a linear function such that
ker(g) 2 i, ker(f;), then g is a linear combination of the f;.

Proof. Consider the map
F:=(fi,....fn): V= k"
= (fi(z),..., fu(z))

and notice that K := ker(F) =, ker(f;). Then both g and F factor through V/ ker(F)
as g : V/ker(F) — k and F : V/ker(F) — k™ respectively, and F is injective. By
extending a basis of Im(F') C k™ to a basis of k™ one can find a linear map
Ak =k
(T1y..oymp) > e1x1 + -+ + epTy

such that X\ o F = g, which implies A o F' = g. Then for every v € V we have
g() = AMF @) = A(f1(v),-- -, fa(v)) = erfr(v) + - + enfa(v)

which shows that g is a linear combination of the f;. O

We can give a much more general version of this result. Fix a ring R, a complete
ideal filter J of R and R-modules M and T', with T' being J-injective and J-torsion (i.e.
T[J]=T). Let E = Endg(T), and notice that Hompg(M,T') is an E-module.

For every submodule M’ of M we will identify Homp (M /M',T) with the E-submodule
{f € Homgr(M,T) | ker(f) 2 M} of Homp(M,T), and we will denote (s ker(f) by
ker(V') for any subset V' C Homp(M,T).
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Proposition 5.2. IfV is a finitely generated E-submodule of Homp(M,T) we have V =
Homp(M/ker(V),T).

Proof. Notice that the inclusion V' C Homp(M/ker(V),T) is obvious. For the other
inclusion we want to show that every homomorphism g : M — T with ker(g) D ker(V)
belongs to V. Let then g be such a map and let g : M/ker(V) — T be its factorization
through the quotient M/ker(V'). Let {fi,...,fn} be a set of generators for V as an
E-module and let

e:M—-T"

We have ker(e) = ker(V), so that ¢ factors as an injective map € : M/ ker(V) — T™. Since
T is J-torsion, so is T, hence € is a J-extension. Since T is J-injective there is an R-linear
map A : 1" — T such that A o€ =7, or equivalently Aoe = g.

A

Tn
Since Homp(T",T) = ;- Endg(T), there are elements e, ..., e, € Endg(T) such that
At1,.. . tn) =e1(t1) + - - -+ en(ty) for every (t1,...,t,) € T". Then for x € M we get

Ae(@) = A(fi(x), ..., fu(x))
= e1(fi(z)) + -+ en(falz))
which means that g =ej 0 f{ + -4+ e, 0 f, € V because V is an E-module. O

From a different point of view, we have two maps

k : { E-submodules of Hompr(M,T)} — {R-submodules of M}
Vv — ker(V)
and
h : { R-submodules of M} —  {E-submodules of Homp(M,T)}
M’ — Homp(M/M',T)

and the previous proposition shows that the restriction k’of k to the subset of finitely
generated E-submodules satisfies h o k' = id. It is natural to ask whether the two maps
are inverse of each other, possibly after restricting h to a suitable subset.

Definition 5.3. We say that T" is a cogenerator for an R-module N if

ﬂ ker(f) =0.

feHomp(N,T)

Using this definition, we may formulate the following duality statement.
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Theorem 5.4. Let R be a unitary ring and let J be a complete ideal filter on R. Let T
be a J-injective and J-torsion left R-module and let M be a left R-module. Assume that
T is a cogenerator for every quotient of M and that Hompg(M,T) is Noetherian as an
Endg(T)-module. The maps

{R-submodules of M} — {Endg(T)-sumbodules of Homp(M,T')}
M’ > Homp(M/M',T)
ker(V') i Vv
define an inclusion-reversing bijection between the the set of R-submodules of M and that

of Endr(T')-submodules of Homp(M,T).

Proof. The maps are clearly inclusion-reversing and the fact that they are inverse of each
other follows from Proposition combined with the Noetherianity of M and from the
assumption that 1" is a cogenerator for every quotient of M. O
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