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Abstract. The underlying abelian group of the field of rational numbers Q has an
interesting property: it is divisible, which means that for every x ∈ Q and every positive
integer n there is a y ∈ Q such that ny = x. On the other hand, if we only care about
dividing by the powers of a certain prime, then also the underlying abelian group of the
ring Z[p−1] has a similar property: it is p-divisible, that is for every x ∈ Z[p−1] there is
y ∈ Z[p−1] such that py = x. If one tries to generalize these concepts to modules over a
general (associative, unitary) ring R, things may not work so well, among other things
due to the possible presence of zero-divisors in the base ring. There is however a natural
(or categorical) concept that works well over any ring, which is injectivity. Indeed an
abelian group is divisible if and only if it is injective as a Z-module. What is in this
setting a suitable generalization for p-divisibility? Is there a more general property that
includes divisibility and p-divisibility as special cases, and that also works well for R-
modules? In this talk I will propose a definition that provides a positive answer to the
two questions above. If time permits I will also show an analogue of Morita duality using
this more general definition.

1. Divisible abelian groups and injective modules

Consider the abelian group Q. If x ∈ Q and n ∈ Z \ {0}, then there is y ∈ Q such that
ny = x; namely, we can take y = x

n . This holds also, for example, for the abelian group
Q/Z. In general, an abelian group satisfying this property is called divisible.

Definition 1.1. An abelian group A is called divisible if for every x ∈ A and every
n ∈ Z \ {0} there is y ∈ A such that ny = x.

For modules over a general ring R this definition might not scale so well. For example,
taking R = Z × Z, the R-module M = Q × Q (with action of R given by multiplication
component-wise) does not satisfy the property above for every x ∈ M : if x = (1, 1) and
r = (0, 1) then there is clearly no y ∈M such that ry = x.

There is however a property that plays the same role in many circumstances.

Definition 1.2. An R module Q is called injective if for every injective R-module ho-
momorphism i : M ↪→ N and every R-module homomorphism f : M → Q there is an
R-module homomorphism g such that g ◦ i = f .

M Q

N

i

f

g

For Z-modules being injective is equivalent to being divisible.

Proposition 1.3. A Z-module is injective if and only if it is divisible as an abelian group.

Proof. Let A be an abelian group and assume that it is injective as a Z-module. Let x ∈ A
and n ∈ Z \ {0}. Consider the inclusion i : nZ ↪→ Z and the map f : nZ→ A which sends
n to x. Then since A is injective f extends to a map g : Z → A which sends n to x, so
letting y = g(1) we have ny = x, as required.
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Assume now that A is divisible and let J : M ↪→ N be and injective homomorphism
of abelian groups and f : M → A any homomorphism. In order to extend f to a map
g : N → A we will use Zorn’s Lemma. Let S be the set of pairs (N ′, ϕ) with N ′ a sugroup
of N containing M and ϕ a homomorphism N ′ → A that extends f . The set S admits a
partial order

(N ′, ϕ) 6 (N ′′, ψ) ⇐⇒ N ′ ⊆ N ′′ and ψ|N ′ = ϕ

Every chain in S has an upper bound. Namely, if C ⊆ S is a chain, i.e. a totally ordered
subset of S, then we can take N ′ to be the union of all N ′ for (N ′, ϕ) ∈ C and we let

Φ : N ′ → A
x 7→ ϕ(x), if there is any (N ′, ϕ) ∈ C with x ∈ N ′

which is well-defined because C is totally ordered (which means that if x belongs to N ′ and
to N ′′ for (N ′, ϕ) ∈ C and (N ′′, ψ) ∈ C, then either (N ′, ϕ) 6 (N ′′ψ) or (N ′′, ψ) 6 (N ′, ψ),
and in any case ϕ and ψ are compatible on x).

By Zorn’s lemma there is then a maximal element (N ′, ϕ) ∈ S, and we want to show
that N ′ = N , so that f extends to the whole N . Assume that N ′ 6= N and let x ∈ N \N ′;
if we manage to extend ϕ to ϕ+ : N ′ + 〈x〉 → A this will yield a contradiction with the
maximality of (N ′, ϕ), and thus we would be able to conclude that indeed N ′ = N .

If 〈x〉 ∩ N ′ = 0, we may simply define ϕ+(x) = 0. Otherwise 〈x〉 ∩ N ′ contains some
nx 6= 0 for some positive integer n which we may assume minimal with respect to this
property. Since A is divisible there is y ∈ A such that ny = ϕ(nx), and one easily checks
that defining ϕ+ as ϕ+(x) = y is compatible with ϕ. As explained above, this concludes
the proof. �

For a prime number p, the abelian groups Z[p−1] and Z[p−1]/Z have a property similar
to the divisibility of Q and Q/Z, but only if we restrict to dividing by (powers of) p.

Definition 1.4. Let p be a prime number. An abelian group A is called p-divisible if for
every x ∈ A there is y ∈ A such that py = x.

Is there any property of R-modules that generalizes p-divisibility, in a way similar to
how injectivity generalizes divisibility?

2. Division in modules

Fix for this and the following sections a unitary ring R.

Definition 2.1. If M ⊆ N are left R-modules and I is an ideal of R, we call the R-
submodule of N

(M :N I) := {x ∈ N | Ix ⊆M}
the I-division module of M (in N).

Notice that (M :N 0) = N and (M :N R) = M . If I ′ ⊇ I we have (M :N I ′) ⊆ (M :N I).
In general we might want to work with (possibly infinite) unions of division modules.

For example if R = Z we are interested in working with⋃
k>0

(
M :N (pk)

)
or with ⋃

n>1

(M :N (n))

So it makes sense to give the following definition.
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Definition 2.2. An ideal filter of R is a non-empty set J of two-sided ideals of R such
that:

(1) If I, I ′ ∈ J then I ∩ I ′ ∈ J and
(2) If I ∈ J and I ′ / R contains I, then I ′ ∈ J .

If J is an ideal filter of R and M ⊆ N are R-modules, we let

(M :N J) :=
⋃
I∈J

(M :N I)

which we call the J-division module of M in N , and

M [J ] := (0 :M J)

which we call the J-torsion submodule of M .
Notice that if the zero ideal belongs to an ideal filter J , then every ideal of R belongs

to J , that is J is the maximal ideal filter. We will denote this ideal filter by 0, and we will
denote the minimal ideal filter {R} by 1. We have (M :N 0) = N and (M :N R) = M ,
and if J ′ ⊆ J we have (M :N J ′) ⊆ (M :N J).

Given a set of ideals S of R, we may consider the ideal filter J generated by S, that is
the minimal (with respect to inclusion) ideal filter of R that contains S. If S = {I} we
have (M :N J) = (M :N I).

Example 2.3. For any unitary ring R, there are two interesting examples: the ideal filter
generated by the powers of a given prime number p

p∞ := {I / R | I ⊇ pnR for some n ∈ N}
and the one generated by all non-zero integers

n̂ := {I / R | I ⊇ nR for some n ∈ N>0} .
Notice that some power of p is equal to 0 in R (respectively n = 0 for some n ∈ Nn>0)
then p∞ (resp. n̂) is simply the set of all two-sided ideals of R.

Thus ideal filters allow us to consider the possibly infinite unions of division modules
mentioned above. We would also like to have a way to distinguish those ideal filters that
describe a complete iteration of the division process, as p∞ and n̂ do and (n) or (pk) do
not. We propose two definition that might capture this concept, and we show that, under
certain condition, one is stronger than the other.

Definition 2.4. We call an ideal filter J of R:

• Complete if for every left R-module N and every submodule M ⊆ N we have

((M :N J) :N J) = (M :N J) .

• Product-closed if for any I, I ′ ∈ J we have II ′ ∈ J .

Proposition 2.5. Let J be a product-closed ideal filter of R. If every ideal in J is finitely
generated, then J is complete.

Proof. Let J be a product-closed ideal filter of R and let M ⊆ N be left R-modules. The
inclusion (M :N J) ⊆ ((M :N J) :N J) is always true, so in order to show that equality
holds we need to prove the other inclusion. Let x ∈ N be such that there is I ∈ J with
Ix ⊆ (M :N J). Let {y1, . . . yn} be a set of generators for I. Then for every i = 1, . . . n
there is an ideal Ii ∈ J such that Iiyix ⊆ M . By definition of ideal filter we have
I ′ :=

⋂n
i=1 Ii ∈ J and since J is product-closed we have I ′I ∈ J . But we also have

I ′Ix ⊆M , which shows that J is complete. �
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The ideal filters introduced in Example 2.3 are both product-closed. If, for example, R
is Noetherian, then they are also complete.

3. J-injective modules

Fix for this section a unitary ring R and a complete ideal filter J of R.

Definition 3.1. An injectiveR-module homomorphism i : M ↪→ N such that (i(M) :N J) =
N is called a J-extension.

We can finally give our definition of J-injective module. In words, one can say that an
injective module is one that admits extensions of maps into it along any injective map. A
J-injective module is one that admits extensions of maps into it along J-extensions.

Definition 3.2. A left R-moduleQ is called J-injective if for every J-extension i : M ↪→ N
and every R-module homomorphism f : M → Q there exists a homomorphism g : N → Q
such that g ◦ i = f .

M Q

N

(J-extension) i

f

g

Notice that in case J = 0 the definition of J-injective module coincides with that of
injective module, because any injective homomorphism is a 0-extension. Moreover, if J ′ is
an ideal filter of R such that J ′ ⊆ J , then a J-injective module is also J ′-injective, because
every J ′-extension is also a J-extension.

The following Proposition is an analogue of the well-known Baer’s criterion in the
classical case of injective modules, and the proof is almost identical to the classical case.

Proposition 3.3. A left R-module Q is J-injective if and only if for every I ∈ J and every
R-module homomorphism f : I → Q there is an R-module homomorphism g : R→ Q that
extends f .

Proof. The “only if” part is trivial, because any two-sided ideal of R is also a left R-
module. For the other implication, let i : M ↪→ N be a J-extensions and let f : M → Q
be any R-module homomorphism. By Zorn’s Lemma there is a submodule N ′ of N and an
extension g′ : N ′ → Q of f to N ′ that is maximal in the sense that it cannot be extended
to any larger submodule of N . If N ′ = N we are done, so assume that N ′ 6= N and let
x ∈ N \N ′.

Let I be the two-sided ideal of R generated by {r ∈ R | rx ∈ N ′}. Since i(M) ⊆ N ′ and
(i(M) :N J) = N there is I ′ ∈ J such that I ′x ⊆ N ′, which implies I ′ ⊆ I, so also I ∈ J .
By assumption the map I → Q that sends y ∈ I to g′(yx) extends to a map h : R → Q.
Since ker(R→ Rx) is contained in ker(h), the map h gives rise to a map h′ : Rx→ Q by
sending rx ∈ Rx to h(r). By definition the restrictions of g′ and h′ to N ′∩Rx coincide, so
we can define a map g′′ : N ′+Rx→ Q that extends both. This contradicts the maximality
of g′, so we conclude that N ′ = N . �

Remark 3.4. One can adapt the proof or Proposition 1.3 to show that an abelian group
is p-divisible if and only if it is p∞-injective (see Example 2.3) as a Z-module.

Let J = 0 be the maximal ideal filter of R and assume that J ′ = J \ 0 is an ideal
filter; this amounts to say that no two non-zero ideals of R have trivial intersection. Using
Proposition 3.3 one can easily show that an R-module Q is J-injective if and only if it is
J ′-injective. Indeed, one implication holds, as remarked above, because J ⊆ J ′, and for
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the other it is enough to notice that the only map 0 → Q can always be extended to the
zero map on R.

One advantage of using J ′ instead of J is that the J ′-torsion submodule may be different
from M [0] = M .

Example 3.5. Let M be an abelian group, let p be a prime and let J = p∞ be the ideal
filter of Z introduced in Example 2.3. Then the localization M [p−1] is a J-injective Z-
module. Indeed if i : N ↪→ P is a J-extension and f : N →M [p−1] is any homomorphism

then for every x ∈ P there is k ∈ N such that pkx ∈ N , and one can define g(x) := f(pkx)
pk

.

It is easy to check that g is then a well-defined group homomorphism such that g ◦ i = f .

4. Injective hulls and J-hulls

Definition 4.1. A map of R-modules i : M ↪→ N is called an essential extension if for
every nonzero submodule P of N we have P ∩ i(M) 6= 0.

It is a well-known fact of commutative algebra that every R-module M admits an
injective hull ι : M ↪→ Γ, which is an essential extension such that Γ is injective. Such an
extension, which is unique up to a not-necessarily-unique isomorphism that is the identity
on M , may be as well characterized by either of the following two properties:

(1) It is the largest essential extension of M , that is to say if i : M ↪→ N is an essential
extension then there is an (injective) R-module homomorphism j : N ↪→ Γ such
that ι ◦ i = j (the injectivity of j follows from the injectivity of ι and the fact that
i : M ↪→ N is an essential extension).

(2) It is the smallest injective extension of M , that is to say if i : M ↪→ N is an
injective R-module homomorphism and N is injective, then there is an injective
R-module homomorphism j : Γ ↪→ N such that j ◦ ι = i (the existence of a map
Γ → N that commutes with i follows from the injectivity of N , but the fact that
this map is injective does not).

As an example, the standard map Zn ↪→ Qn is an injective hull of the Z-module Zn.
There is an analogue construction for J-injectivity.

Definition 4.2. Let J be a complete ideal filter of R and let M be a left R-module. A
J-extension ι : M ↪→ Ω is called a J-hull of M if it is an essential extension and Ω is
J-injective.

The following theorem is not a replacement for the classical one, since it relies on it.

Theorem 4.3. Every left R-module M admits a J-hull, which is unique up to a not-
necessarily-unique isomorphism that is the identity on M .

Sketch of proof. Let ι : M ↪→ Γ be an injective hull of M and let Ω := (ι(M) :Γ J). One
can show that ι maps M into Ω and ι : M ↪→ Ω is indeed a J-hull of M , and that for any
other J-hull ι′ : M ↪→ Ω′ there is an isomorphism j : Ω

∼→ Ω′ such that j ◦ ι = ι′. �

Example 4.4. Let M be an abelian group, let p be a prime and let J = p∞ be the ideal
filter of Z introduced in Example 2.3. Write M as

M = Zr ⊕
k⊕
i=1

Z/peiZ⊕M [n]

where n is a positive integer coprime to p and the ei’s are suitable exponents. Let

Γ = (Z[p−1])r ⊕ (Z[p−1]/Z)k ⊕M [n]
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and

ι : M → Γ

(z, (si mod pei)i, t) 7→
(
z
1 ,
(

s
pei mod Z

)
i
, t
)

Then ι : M → Γ is a J-hull. To see this it is enough to show that f : Zr ↪→ (Z[p−1])r and
gi : Z/peiZ ↪→ Z[p−1]/Z for every i = 1, . . . , k are J-hulls, and that M [n] is J-injective,
being trivially an essential extension of itself. The assertions about f and M [n] follow
from Example 3.5, noticing that multiplication by p is an automorphism of M [n] and that
Zr ↪→ (Z[p−1])r is an essential J-extension.

So we are left to show that for every positive integer e the map g : Z/peZ ↪→ Z[p−1]/Z de-
fined by (s mod pe) 7→ ( spe mod Z) is a J-hull. It is a J-extension, because the Prüfer group

Z[p−1]/Z itself is J-torsion, and it is also essential because every subgroup of Z[p−1]/Z is
of the form 1

pd
Z, so it intersects the image of g in 1

pmin(e,d)Z.

Finally, Z[p−1]/Z is divisible as an abelian group, so in particular it is J-injective, since
in this case it is equivalent to being p-divisible.

We can draw an interesting parallel between the J-hull of an R-module M and the
algebraic closure k of a field k. Indeed k is at the same time the smallest algebraically
closed extension and the largest algebraic extension of k. Similarly to J-hulls, an algebraic
closure is unique up to a not-necessarily-unique isomorphism that fixes the base field.

5. Morita duality

Consider the following well-know fact about vector spaces and linear maps.

Proposition 5.1. Let V be a finite dimensional vector space over a field k and let
f1, . . . , fn : V → k be linear functions. If g : V → k is a linear function such that
ker(g) ⊇

⋂n
i=1 ker(fi), then g is a linear combination of the fi.

Proof. Consider the map

F := (f1, . . . , fn) : V → kn

x 7→ (f1(x), . . . , fn(x))

and notice that K := ker(F ) =
⋂n
i=1 ker(fi). Then both g and F factor through V/ ker(F )

as g : V/ ker(F ) → k and F : V/ ker(F ) → kn respectively, and F is injective. By
extending a basis of Im(F ) ⊆ kn to a basis of kn one can find a linear map

λ : kn → k

(x1, . . . , xn) 7→ e1x1 + · · ·+ enxn

such that λ ◦ F = g, which implies λ ◦ F = g. Then for every v ∈ V we have

g(v) = λ(F (v)) = λ(f1(v), . . . , fn(v)) = e1f1(v) + · · ·+ enfn(v)

which shows that g is a linear combination of the fi. �

We can give a much more general version of this result. Fix a ring R, a complete
ideal filter J of R and R-modules M and T , with T being J-injective and J-torsion (i.e.
T [J ] = T ). Let E = EndR(T ), and notice that HomR(M,T ) is an E-module.

For every submodule M ′ of M we will identify HomR(M/M ′, T ) with the E-submodule
{f ∈ HomR(M,T ) | ker(f) ⊇M} of HomR(M,T ), and we will denote

⋂
f∈V ker(f) by

ker(V ) for any subset V ⊆ HomR(M,T ).
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Proposition 5.2. If V is a finitely generated E-submodule of HomR(M,T ) we have V =
HomR(M/ ker(V ), T ).

Proof. Notice that the inclusion V ⊆ HomR(M/ ker(V ), T ) is obvious. For the other
inclusion we want to show that every homomorphism g : M → T with ker(g) ⊇ ker(V )
belongs to V . Let then g be such a map and let g : M/ ker(V ) → T be its factorization
through the quotient M/ ker(V ). Let {f1, . . . , fn} be a set of generators for V as an
E-module and let

ε : M → Tn

x 7→ (f1(x), . . . , fn(x))

We have ker(ε) = ker(V ), so that ε factors as an injective map ε : M/ ker(V )→ Tn. Since
T is J-torsion, so is Tn, hence ε is a J-extension. Since T is J-injective there is an R-linear
map λ : Tn → T such that λ ◦ ε = g, or equivalently λ ◦ ε = g.

T

M M/ ker(V )

Tn
ε

g

g

ε

λ

Since HomR(Tn, T ) ∼=
⊕n

i=1 EndR(T ), there are elements e1, . . . , en ∈ EndR(T ) such that
λ(t1, . . . , tn) = e1(t1) + · · ·+ en(tn) for every (t1, . . . , tn) ∈ Tn. Then for x ∈M we get

λ(ε(x)) = λ(f1(x), . . . , fn(x))

= e1(f1(x)) + · · ·+ en(fn(x))

which means that g = e1 ◦ f1 + · · ·+ en ◦ fn ∈ V because V is an E-module. �

From a different point of view, we have two maps

k : {E-submodules of HomR(M,T )} → {R-submodules of M}
V 7→ ker(V )

and

h : {R-submodules of M} → {E-submodules of HomR(M,T )}
M ′ 7→ HomR(M/M ′, T )

and the previous proposition shows that the restriction k′of k to the subset of finitely
generated E-submodules satisfies h ◦ k′ = id. It is natural to ask whether the two maps
are inverse of each other, possibly after restricting h to a suitable subset.

Definition 5.3. We say that T is a cogenerator for an R-module N if⋂
f∈HomR(N,T )

ker(f) = 0 .

Using this definition, we may formulate the following duality statement.
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Theorem 5.4. Let R be a unitary ring and let J be a complete ideal filter on R. Let T
be a J-injective and J-torsion left R-module and let M be a left R-module. Assume that
T is a cogenerator for every quotient of M and that HomR(M,T ) is Noetherian as an
EndR(T )-module. The maps

{R-submodules of M} → {EndR(T )-sumbodules of HomR(M,T )}
M ′ 7→ HomR(M/M ′, T )

ker(V ) ←[ V

define an inclusion-reversing bijection between the the set of R-submodules of M and that
of EndR(T )-submodules of HomR(M,T ).

Proof. The maps are clearly inclusion-reversing and the fact that they are inverse of each
other follows from Proposition 5.2 combined with the Noetherianity of M and from the
assumption that T is a cogenerator for every quotient of M . �
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