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Introduction

We will follow the first pages of the paper Galois Properties of Torsion Points on Abelian Varieties by
N. M. Katz. We will give the main result and prove that the problem reduces to a statement about
representation theory, but we will not give the proof of the results themselves.

As an application, we compute the torsion points of some elliptic curves (not in these notes).

1 The Problem

Let A be an abelian variety over a number field K. Recall the following important Theorem:

Theorem 1.1 (Mordell-Weil). Let A be an abelian variety over a numebr field K. The group of K-
rational points of A is a finitely generated abelian group.

Proof. See [2], Theorem C.0.1 or [5], Chapter VIII for the case of elliptic curves.

Corollary 1.2. The torsion part A(K)tors of A(K) is finite.

The following fact is maybe less well-known, but it will be fundamental for us.

Lemma 1.3. Let p be a prime of K lying over the rational prime p and let ep be the absolute ramification
of K at p (i.e. pOK = pep). Assume that A has good reduction at p and that ep < p − 1. Then the
reduction map A(K)→ A(kp) is injective on the torsion points.

Proof. See the appendix of [3].

Corollary 1.4. For all but finitely many place of K we have #A(K)tors |#A(kp).

Question: does the converse, in some sense, hold? For elliptic curves we have affirmative answer,
but only up to isogeny.

2 Interlude - More Facts on Elliptic Curves

Let E be an elliptic curve over a field K and let ` be a rational prime with charK 6= `. Fix an algebraic
closure K of K.

For every n ≥ 1 we have that E[`n] ∼= (Z/`nZ)2 is a free Z/`nZ-module of rank 2. Since any morphism
of elliptic curves sends `n-torsion points to `n-torsion points, we have an action of the absolute Galois
group of K on E[`n], i.e. we have a Galois representation

ρ`n : Gal
(
K |K

)
→ AutZ/`nZ (E[`n]) ∼= GL2 (Z/`nZ) (1)

where the isomorphism comes from choosing a Z/`nZ-basis for E[`n].
If we want to consider all the `-power torsion at once, we can take the projective limit with respect

to transition maps E[`n+1]→ E[`n] given by multiplication by `. The Z`-module

T`(E) := lim←−
n

E[`n] ∼= Z2
`
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is called the Tate module of E. Moreover, the representations as in (1) are compatible and they give rise
to a representation

ρ` : Gal
(
K |K

)
→ AutZ`

T`(E) ∼= GL2(Z`)

such that the diagrams of the form

Gal
(
K |K

) ρ` //

ρ`n ''

GL2(Z`)

��
GL2(Z/`nZ)

commute.
Moreover, we define

K(E[`n]) := K
ker ρ`n

which is a finite extension of K, given by adjoining the coordinates of all torsion points of E. By definition
we have Gal(K(E[`n]) |K) ∼= Im ρ`n .

Proposition 2.1. Let φ : E → E be an endomorphism and let φ` be the induced map on T`(E). Then
det(φ`) and tr(φ`) are independent of the prime `.

Proof. See [5], Proposition III.8.6.

In view of the proposition above, for any endomorphism φ : E → E we can define detφ := det(φ`)
and trφ := tr(φ`). It makes also sense to define the characteristic polynomial f charφ of φ to be the
characteristic polynomial of any φ`.

Proposition 2.2. Let E be an elliptic curve over a finite k and let F ∈ Gal(k | k) be the Frobenius. Then
the characteristic polynomial of F is

f charFp
(T ) = T 2 − aT + #k

where a = 1 + #k −#E(k). In particular, we have #E(k) = det(1− F ).

Proof. See [5], Theorem V.2.3.1.

With this we can prove the following result.

Lemma 2.3. Let E1, E2 be two elliptic curves over a finite field k. If E1 and E2 are k-isogenous, we
have #E1(k) = #E2(k).

Proof. Let φ : E1 → E2 be an isogeny defined over k and let F be the Frobenius of k. We claim that the
characteristic polynomial f1 for F as endomorphism of E1 is the same as that of F as an endomorphism
of E2, which is enough to conclude.

To prove the claim, let P ∈ E be any point. Then OE2 = φ(OE1) = φ(f1(F )(P )) = f1(F )(φ(P ))
because φ, being defined over k, commutes with f1(F ). Since P was arbitrary and φ is surjective, we
have f1(F )(Q) = OE2

for all Q ∈ E2, thus f1(F ) = 0 as an endomorphism of E2. This means that f1 si
the characteristic polynomial of F as an endomorphism of E2.

Remark 2.4. The converse is also true, as a consequence of Tate’s Isogeny Theorem.
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3 Main Results and Some Consequences

The main result of [3] is the following.

Theorem 3.1. Let A be an elliptic curve over a number field K. Let m be a positive integer such that
m |#A(kp) for all but finitely many primes p. There exists an elliptic curve A′ that is K-isogenous to A
and such that m |#A′(K)tors.

Remark 3.2. In Theorem 3.1 it is enough to assume that m |#A(kp) holds for a set of primes of Dirichlet
density 1.

Theorem 3.1 is equivalent to the following.

Theorem 3.3. Let A be an elliptic curve over a number field K. Let ` be a prime and n ≥ 1 an integer.
Assume that `n |#A(kp) for all but finitely many primes p. There exists an elliptic curve A′ that is
K-isogenous to A via an `-power-degree isogeny such that `n |#A′(K)tors.

Proof of equivalence. Assume that Theorem 3.1 holds. We know that such A′ exists, together with a
K-isogeny ϕ : A → A′ of not necessarily `-power degree. Let M = kerϕ and let M` be the `-primary
part of M . Then π : A → A/M` of `-power degree and ϕ factors via π as an isogeny ψ : A/M` → A′ of
degree prime to `. Thus ψ is an isomorphism on the `∞-torsion points, and we conclude by replacing A′

with A/M`.
For the converse, we procede by induction on the number of prime factos of m. The base case (i.e.,

m is a prime power) is given directly by Theorem 3.3. Assume now that m = m1`
n with ` - m1.

Let ψ : A → A′ be an isogeny, which we can assume of degree not divisible by `, with A′ such that
m1 |#A′(K)tors. By Lemma 2.3 we have `n |#A′(K)tors, so there exists an isogeny ϕ : A′ → A′′ of
`-power degree such that `n |#A′′(K)tors. Moreover, ϕ is an isomorphism on the m1-torsion part, so we
conclude by taking the isogeny ϕ ◦ ψ.

Remark 3.4. The case n = 1 of Theorem 3.3 holds for abelian surfaces as well, while Theorem 3.1 fails
in this case. In dimension 3 or higher everything fails.

Moreover, since ` |#A(kp) ⇐⇒ A(kp) has `-torsion, the n = 1 case of Theorem 3.1 can be rephrased
as an (almost everywhere) local-global principle: the existence of `-torsion points at almost all the reduc-
tions implies the existence of global `-torsion points.

We can see that the results above imply the following proposition. In some sense, it tells us that there
exists an elliptic curve K-isogenous to A that has “all the possible rational torsion”.

Proposition 3.5. Let A be an elliptic curve over a number field K. There exists a positive integer N
that divides #A(kp) for almost all p and that is maximal with respect to this property. Moreover, there
exists an elliptic curve AN which is K-isogenous to A and such that #A(K)tors = N .

Proof. For any n ≥ 2 let

an := gcd{A(kp) |n ≤ #kp} = lim
m→+∞

gcd{A(kp) |n ≤ #kp ≤ m}

and define V` := limn→+∞ v`(an) for all primes `.
We claim that V` <∞ for all primes `. It is in fact a deep result (due to Faltings, see [1]) that, up to

isomorphism, there are only finitely many elliptic curves isogenous to A via an `-power-degree isogeny.
Since for any n ≤ we have that `n |#A(kp) for almost all p, the claim follows from Theorem 3.3.

Moreover we have V` = 1 for all but finitely many `, again by Theorem 3.3 and using the fact that
the kernel of an isogeny of degree `d is a subgroup of A(K)tors with `d elements. In fact, by a Theorem

of Merel [4], if any elliptic curve over K has a point of order ` than ` < [K : Q]3[K:Q]2 . If ` 6= 1 some `
greater than this bound, then Theorem 3.3 would be in contradiction with this result.

Let then N =
∏
` V`. Clearly N is the biggest integer dividing #A(kp) for almost all p. The last part

follows directly from Theorem 3.1.
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4 Reduction to Representation Theory

Theorem 4.1 (×åáîòàð¼â’s Density Theorem). Let L |K be a finite Galois extension with Galois group
G. Let X ⊆ G be a union of conjugacy classes. Then the set of primes p of K that are unramified in L
and such that the Frobenius at p is in X has density #X/#G.

Corollary 4.2. Let A be an elliptic curve over a number field K and let ` be a rational prime. Then

det(1− g) ≡ 0 (mod `n) for all g ∈ Gal(K |K)

if and only if

`n |#A(kp) for almost all primes p of K.

Proof. Let p be a prime of good reduction for A. Since det(1−Fp) = #A(kp), the “only if” part is trivial.
For the “if” part, we use ×åáîòàð¼â’s Density Theorem. Let L = K(A[`n]) and

X = {g ∈ Gal(L |K) | det(1− ρ`n(g)) = 0}.

Then for almost all p we have Fp ∈ X, so it must be X = Gal(L |K). By commutativity of the diagram

Gal(K |K)
ρ` //

����

GL2(Z`)
det //

����

Zl

����
Gal(L |K)

ρ`n // GL2(Z/`nZ)
det // Z/`nZ

we conclude.

Corollary 4.3. The integer N of Proposition 3.5 divides #E(kp) for all p of good reduction for E.

Thanks to the Corollary we can rephrase Theorem 3.3 as follows.

Theorem 4.4. Let A be an elliptic curve over a number field K. Let ` be a prime and n ≥ 1 an integer.
Assume that det(1 − g) ≡ 0 (mod `n) for all γ ∈ Gal(K |K). There exists an elliptic curve A′ that is
K-isogenous to A via an `-power-degree isogeny such that `n |#A′(K)tors.

We also need the following general fact.

Proposition 4.5. Let A be an elliptic curve over a number field K and let ` be a rational prime.
There is a one-to-one correspondence between isomorphism classes of elliptic curves A′ over K that are
K-isogenous to A via an isogeny of `-power degree and Gal(K |K)-stable lattices in V` = T`(A)⊗Q.

Sketch of proof. If φ : A→ B is an isogeny, then φ : T`(A)→ T`(B) is injective and φ` : V`(A)→ V`(B)
is an isomorphism. Thus it sends T`(A) to some other lattice in V`(A). Since φ is defined over K, this
lattice is Galois-stable.

Conversely, let Λ ⊆ V`(A) be any Galois-stable lattice. Let k, h ≥ 1 be integers such that `hT`(A) ⊆
`kΛ ⊆ T`(A) and let N = Im(`k → T`(A)/`hT`(A)) ⊆ A[`h], which is a finite subgroup of A. Let
B := A/N and let ϕ : A→ B be the quotient map. We have the following commutative diagram:

A
`h //

φ

##

��

A

B

��
A/A[`h]

DD

so there exists an isogeny ψ : B → A sich that ψ ◦ φ = `h. Passing on the Tate modules we get
ψ`(T`(B)) ⊇ `hT`(A), so it is enough to show that ψ`(T`(B))/`hT`(A) = N . For any n we have

B[`n] = {a+N | a ∈ A, `na ∈ N}
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and since ψ(a+N) = `ha we get

ψ(T`(B))

`hT`(A)
=
{(ψ`(ak +N)k∈N = (`kak)k∈N | ak ∈ A, `kak ∈ N, `ak+1 − ak ∈ N ∀ k}

`hT`(A)
=

= {`hah | ah ∈ A, `hah ∈ N} =

= N.

So B is isogenous to A and such that T`(B) = `kΛ. Moreover, the fact that Λ is Galois-stable implies
that the isogeny that we constructed is defined over K. Up to composing with multiplication by `k, we
may assume that T`(B) = Λ.

With this fact we get the equivalent formulation that follows.

Theorem 4.6. Let A be an elliptic curve over a number field K. Let ` be a prime and n ≥ 1 an integer.
Assume that det(1 − ρ`(g)) ≡ 0 (mod `n) for all γ ∈ Gal(K |K). There exist Gal(K |K)-stable lattices
Λ ⊇ Λ′ in V`(A) such that #(Λ/Λ′) = `n and Gal(K |K) acts trivially on Λ/Λ′.

Proof of equivalence with Theorem 4.4. If Theorem 4.4 holds, we can let Λ be the lattice corresponding
to A′ and Λ′ that corresponding to A′/N , where N ⊆ A′(K) is any group of rational torsion points of
order `n. Vice-versa, we can let A′ be the elliptic curve corresponding to Λ; the existence of an elliptic
curve B corresponding to Λ′ and of a K-isogeny φ : A′ → B assures that kerφ ⊆ A′(K) is a group of
rational torsion points of order `n.

Our theorem is then a consequence of the following result, which is purely about representation theory.

Proposition 4.7. Let ` be a prime number, n ≥ 1 an integer, V a two-dimensional Q`-vector space and
G ⊆ AutQ`

(V ) a compact subgroup. If det(1− g) ≡ 0 (mod `n) for every g ∈ G, then there exist G-stable
lattices Λ ⊇ Λ′ such that #(Λ/Λ′) = `n and such that the action of G on Λ/Λ′ is trivial.
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