KUMMER THEORY FOR ELLIPTIC CURVES

SEBASTIANO TRONTO

ABSTRACT. These are the notes for an expository talk on the results of [2]] given at the Leiden algebra seminar.

1. INTRODUCTION

Fix a number field K and an algebraic closure K of K. Let E be an elliptic curve over K without CM over K.
For M € Z>1 we denote by

E[M]:={P € E(K)|MP =0}
the group of M -torsion points and by
Ky = K(E[M])
the M-th division field of E, that is the field generated by the coordinates of the M -torsion points of E. Alternatively,
one can consider the action of Gal(K | K) on E[M] and define K as the subfield of K fixed by the subgroup of

Gal(K | K) that acts trivially on E[M]. This shows that K | K is Galois.
Let now o € E(K) be a point of infinite order. For N € Z~; We denote by

Nla = {Be K|NB=a}
the set of N-division points of c. Fixing 3 € N '« gives a bijection
¢s: N"'a — E[N]
B—p -5
Notice that K(N~'a) O K(E[N]). For M, N € Z>1 with N | M we let
Kyn = K(E[M],N"'a)

which is a Galois extension of K. We are interested in studying extensions of K of this form; for example, we want
to compute their degree. Since the extensions of the form K, | K are largely studied in the literature, we focus on
the “Kummer part” Ky n| K.

Remark 1.1. In the above, one can replace F by any commutative algebraic group over K. For example if one takes
E = Gy, the extension Ky becomes K ((ps, ¥/), that is a classical Kummer extension. In this situation, the
degree [Kprn : K] is close to N: in fact there is a constant C' = C(K, «) such that N/[K s n : K] divides C
for any M and N.

Our goal is to give an explicit version of the following result:

Theorem 1.2 (See [3]). There is a constant C = C(E, K, «) such that N2/[KM7N : K] divides C for any pair of
positive integers M, N with N | M.

More precisely, we give an explicit value for C' that only depends on the ¢-adic torsion representations associated
with E// K and on divisibility properties of the point .
Itis enough to consider the case M = N': in fact, assume that there is a constant C' > 1 such that M2 /[K s pr : K]
divides C for all positive integers M. Then for any N | M, since [K s @ Kar,n] divides (M /N )2, we have that
N2 _NQ[KMVMZKM’N] ]\42

= divides ————,
(KN + K] [Knnr : K] (K K

which in turn divides C.
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2. GALOIS REPRESENTATIONS

2.1. The torsion representation. The Galois group Gal(K | K) acts on E(K). Since E[N] is defined over K,
the action restricts to E[N]. Moreover it respects the group structure of F, so we get a map py : Gal(K | K) —
Aut(E[N]), which we call the (mod N)—torsion representation associated with E. Fixing a basis of E[N] induces
an isomorphism Aut(E[N]) = GLg(Z/NZ), and thus we identify this map with py : Gal(K | K) — GLo(Z/NZ).

Passing to the limit on the powers of a fixed prime ¢ we get an action on Ty(E) = lim E [¢"] = 72, and thus a
representation py : Gal(K | K) — GLa(Zy), called (-adic torsion representation. Taking the product over all
primes we get a representation p, : Gal(K | K) — GLy(Z), called the adelic torsion representation.

We denote by H, the image of p, for z € NU {¢*° | £ prime} U {o0}.

Theorem 2.1 (Serre). The image of p is open in GLQ(Z). Equivalently, py is surjective for almost all primes ¢
and its image is open in GLa(Zy) for all ¢.

~

Recall that a subgroup of GLa(Z) or GL2(Zy) is open if and only if it is closed and of finite index. Since
GLa(Zg) 2 I+ EMa(Zg) D 1+ P Mo(Zg) D+ D I+ L"Mo(Zg) D -+

is a fundamental system of neighborhoods of the indentity in GLa(Z;), the image of pyo must contain I + ¢ Mo (Zy)
for some n. We call a minimal such n a parameter of maximal growth for the ¢-adic torsion representation, and we
denote it by ny.

2.2. The Kummer representation. Consider the action of Gal(K | K ) on N~ 'a. Fixing an element 3 € N~ la
we get a map

KN Gal(f ’ KN) — E[N]
or—0o(f) =5

This map does not depend on the choice of 3: if fact each 3/ € N~ L« is of the form 8’ = 3+ T for some T € E[N],
thuso (') — ' =c(B+T)-B—-T =0(B)+0(T)—B—T = 0(B) — B since o fixes E[N].

Moreover, the kernel of xy is exactly Gal(K | Kx ), so that we have an injective map Gal(Kn n | Ky) <
E[N]. This tells us in particular that [Ky y : K] divides N2.

Moreover, from the fundamental Galois theory exact sequence

1— Gal(KN’N | KN) — Gal(KN’N ’ K) — Gal(KN,N | KN) —1
one sees that Hy acts on Viy := Im k by conjugation. This action coincides with the natural action of GLy(Z/NZ)
on (Z/NZ)>.
3. THE /-ADIC AND ADELIC FAILURES

Elementary field theory gives

N2 (%) KZW(N)
[Knn BEN] o8 By eeen KN
£ prime
- 10 20e(N) (K o) goev) = Kpoym]
on B e s Ky [K o) + KN]
£ prime
e el |
= N Kve(N) vy (N) mKN N KUZ(N)
fN [KEW(M,K’U@(N) :KEW(M] ¢ £ ¢
£ prime

where (x) holds because the degree [K \ vy : K] is a power of £, so the fields K ,.,(v) are linearly disjoint over
K, and clearly they generate all of Ky .
Definition 3.1. Let ¢ be a prime and N a positive integer. Let n := vy(N). We call

£2n
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the (-adic failure at N and
[Kgn oo Kgn]
By(N) =—F"———==KmmNKy:Kpm
the adelic failure at N (related to ¢). Notice that both A;(N') and B,;(NN) are powers of £.

Example 3.2. It is clear that the /-adic failure A;(/N') can be nontrivial, that is, different from 1. Suppose for example
that « = ¢ for some § € E(K): then we have

Kf"l” = Kgn (K*"a) = Kgn (einJrlﬂ),
and the degree of this field over Kyn is at most £2(*~1), 50 £2 | Ay(N). In Example [4.4{ we will show that the /-adic

failure can be non-trivial also when « is strongly ¢-indivisible.
We have to show the following:

(1) For every ¢ there is an explicit a, € N such that A;(N) divides ¢*¢ for every IV, and ay = 0 for almost all £.
(2) For every / there is an explicit by € N such that B,(N) divides % for every N, and by = 0 for almost all /.

4. THE /¢-ADIC FAILURE
In case pye is surjective, the following result takes care of the ¢-adic failure:

Theorem 4.1 (Jones-Rouse, [I, Theorem 5.2]). Assume that py is surjective and that « is {-indivisible in E(K). If
¢ = 2 assume moreover that Ko 9 Z Ky. Then Ay(N) = 1 for every N.

When the ¢-adic torsion representation is not surjective and the point « is not necessarily indivisible, it is still
possible to bound the ¢-adic failure by “how much” the hypotheses of the Theorem fail.

In particular, a bound on the divisibility of the point « in the tower of /-power division field tells us that there exist
some non-trivial elements in V;» for n big enough.

Lemma 4.2. If o € FE(K) is not {4+ -divisible over Ky, then Vi contains a vector of valuation at most d.
Then, if Hy» is big enough, we can use the action of Hy» on Vyn to move this element around and make Vy» larger.

Lemma 4.3. Suppose that Vi contains a vector of valuation at most d and that Hyn contains all matrices that are
congruent to the identity modulo ™. Then V;~ contains f‘“‘”Z?.

Idea of proof. Assume that v := (%e; € Vyeo. Then forany g = I +¢"M € Hyo we have Vi 3 gv—v = £"t9Me;.
Letting M vary we get all of K‘H"Z%. ([

In the proposition above we can take n = ny, so it remains to bound the divisibility of « in K. First of all, write
a = (UK 3 4 T where § € E(K) is indivisible in E(K)/E(K )iors and T' € E(K) has order a power of £. We
call d(a, K) the ¢-divisibility parameter of a over K.

The point 5 may not be indivisible in E(Kyn)/E(Kn )tors, S0 the (-divisibility of & may increase.

Example 4.4. Consider the elliptic curve F over Q given by the equation
y? +y = — 2162 — 1861
with Cremona label 17739g1. We have F(Q) = Z @ Z/3Z, with a generator of the free part given by P =

(23769 3529853 '\which is indivisible in E(Q)/E(Q)tors.

The 3-torsion field of E is given by Q(z), where z is any root of 2° + 3. Over this field the point
803 416 507 89133 199071 95323
o= (T - 1 e ) € F@E)

200° 2007 T 200" 8000 ° ~ 8000 © 8000
is such that 3Q) = P.

From the study of the cohomology groups H'(H ., E[¢"]) it follows that this phenomenon is also bounded by 7.
Proposition 4.5. If a = (X*5) 8 + T with 8 and T as above, then d(a, Ky=) < d(a, K) + ny.

It follows that that we can take ay = 4n, + 2d for all the finitely many primes such that the /-adic torsion repres-
entation is not surjective or d(«, K') # 0, and a, = 0 for all other primes.
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5. THE ADELIC FAILURE

Recall that the adelic failure is B;(N) = [Kyn gn N K : K¢n], where £ = vo(N). Let R = N/{" and consider the
following diagram:

K['VLR’gn

/\
\/

L= Kgn’gn N Kypp

F = Kgnﬁn N KR

Kgnjn Kpnp

T:=KmNKpg

K
It is clear that By(IN) = [F' : T, so we want to bound this quantity.
The extension F' | T is abelian, and if T = K one can - with a bit of work - conclude that [F : K] | £2". A result

of Campagna and Stevenhagen tells us that there is a finite and explicit set of primes .S, depending only on E and K,
such that 7" = K holds for every ¢ ¢ S. } 3
For the finitely remaining primes, one sets K = Hpe g K and repeats the argument: now we do have Ky N

Kp = K, and [F : T] divides [K : K] - £2™, where 71, is the usual parameter for /K. It is not hard to see that
ny < Ny + Ug([f( : K).
If follows that one can take by, = 2ny + 3v,([K : K]) for the finitely primes ¢ that DO NOT satisfy the following
conditions:
® pyoo 1S surjective;
e/c S 5
e « is (-indivisible in E(K)/E(K )tors;
and by = 0 for all ¢ that satisfy all the conditions above.
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