
KUMMER THEORY FOR ELLIPTIC CURVES
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ABSTRACT. These are the notes for an expository talk on the results of [2] given at the Leiden algebra seminar.

1. INTRODUCTION

Fix a number field K and an algebraic closure K of K. Let E be an elliptic curve over K without CM over K.
For M ∈ Z>1 we denote by

E[M ] :=
{
P ∈ E(K) |MP = 0

}
the group of M -torsion points and by

KM := K(E[M ])

the M -th division field of E, that is the field generated by the coordinates of the M -torsion points of E. Alternatively,
one can consider the action of Gal(K | K) on E[M ] and define KM as the subfield of K fixed by the subgroup of
Gal(K | K) that acts trivially on E[M ]. This shows that KM | K is Galois.

Let now α ∈ E(K) be a point of infinite order. For N ∈ Z>1 We denote by

N−1α :=
{
β ∈ K | Nβ = α

}
the set of N -division points of α. Fixing β ∈ N−1α gives a bijection

ϕβ : N−1α −→ E[N ]

β′ 7−→ β′ − β

Notice that K(N−1α) ⊇ K(E[N ]). For M,N ∈ Z>1 with N |M we let

KM,N := K(E[M ], N−1α)

which is a Galois extension of K. We are interested in studying extensions of K of this form; for example, we want
to compute their degree. Since the extensions of the form KM | K are largely studied in the literature, we focus on
the “Kummer part” KM,N |KM .

Remark 1.1. In the above, one can replace E by any commutative algebraic group over K. For example if one takes
E = Gm, the extension KM,N becomes K(ζM , N

√
α), that is a classical Kummer extension. In this situation, the

degree [KM,N : KM ] is close to N : in fact there is a constant C = C(K,α) such that N/[KM,N : KM ] divides C
for any M and N .

Our goal is to give an explicit version of the following result:

Theorem 1.2 (See [3]). There is a constant C = C(E,K,α) such that N2/[KM,N : KM ] divides C for any pair of
positive integers M,N with N |M .

More precisely, we give an explicit value for C that only depends on the `-adic torsion representations associated
with E/K and on divisibility properties of the point α.

It is enough to consider the caseM = N : in fact, assume that there is a constantC > 1 such thatM2/[KM,M : KM ]
divides C for all positive integers M . Then for any N |M , since [KM,M : KM,N ] divides (M/N)2, we have that

N2

[KM,N : KM ]
=
N2[KM,M : KM,N ]

[KM,M : KM ]
divides

M2

[KM,M : KM ]
,

which in turn divides C.
1
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2. GALOIS REPRESENTATIONS

2.1. The torsion representation. The Galois group Gal(K | K) acts on E(K). Since E[N ] is defined over K,
the action restricts to E[N ]. Moreover it respects the group structure of E, so we get a map ρN : Gal(K | K) →
Aut(E[N ]), which we call the (modN)−torsion representation associated with E. Fixing a basis of E[N ] induces
an isomorphism Aut(E[N ]) ∼= GL2(Z/NZ), and thus we identify this map with ρN : Gal(K | K)→ GL2(Z/NZ).

Passing to the limit on the powers of a fixed prime ` we get an action on T`(E) = lim←−E[`n] ∼= Z2
` , and thus a

representation ρ`∞ : Gal(K | K) → GL2(Z`), called `-adic torsion representation. Taking the product over all
primes we get a representation ρ∞ : Gal(K | K)→ GL2(Ẑ), called the adelic torsion representation.

We denote by Hz the image of ρz for z ∈ N ∪ {`∞ | ` prime} ∪ {∞}.

Theorem 2.1 (Serre). The image of ρ∞ is open in GL2(Ẑ). Equivalently, ρ`∞ is surjective for almost all primes `
and its image is open in GL2(Z`) for all `.

Recall that a subgroup of GL2(Ẑ) or GL2(Z`) is open if and only if it is closed and of finite index. Since

GL2(Z`) ⊇ I + `M2(Z`) ⊇ I + `2M2(Z`) ⊇ · · · ⊇ I + `nM2(Z`) ⊇ · · ·

is a fundamental system of neighborhoods of the indentity in GL2(Z`), the image of ρ`∞ must contain I + `nM2(Z`)
for some n. We call a minimal such n a parameter of maximal growth for the `-adic torsion representation, and we
denote it by n`.

2.2. The Kummer representation. Consider the action of Gal(K | KN ) on N−1α. Fixing an element β ∈ N−1α
we get a map

κN Gal(K | KN ) −→ E[N ]

σ 7−→ σ(β)− β

This map does not depend on the choice of β: if fact each β′ ∈ N−1α is of the form β′ = β+T for some T ∈ E[N ],
thus σ(β′)− β′ = σ(β + T )− β − T = σ(β) + σ(T )− β − T = σ(β)− β since σ fixes E[N ].

Moreover, the kernel of κN is exactly Gal(K | KN,N ), so that we have an injective map Gal(KN,N | KN ) ↪→
E[N ]. This tells us in particular that [KN,N : KN ] divides N2.

Moreover, from the fundamental Galois theory exact sequence

1→ Gal(KN,N | KN )→ Gal(KN,N | K)→ Gal(KN,N | KN )→ 1

one sees that HN acts on VN := ImκN by conjugation. This action coincides with the natural action of GL2(Z/NZ)
on (Z/NZ)2.

3. THE `-ADIC AND ADELIC FAILURES

Elementary field theory gives

N2

[KN,N : KN ]

(∗)
=
∏
`|N

` prime

`2v`(N)

[KN,`v`(N) : KN ]
=

=
∏
`|N

` prime

`2v`(N)

[K`v`(N),`v`(N) : K`v`(N) ]
·
[K`v`(N),`v`(N) : K`v`(N) ]

[KN,`v`(N) : KN ]
=

=
∏
`|N

` prime

`2v`(N)

[K`v`(N),`v`(N) : K`v`(N) ]
· [K`v`(N),`v`(N) ∩KN : K`v`(N) ]

where (∗) holds because the degree [KN,`v`(N) : KN ] is a power of `, so the fields KN,`v`(N) are linearly disjoint over
KN , and clearly they generate all of KN,N .

Definition 3.1. Let ` be a prime and N a positive integer. Let n := v`(N). We call

A`(N) :=
`2n

[K`n,`n : K`n ]
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the `-adic failure at N and

B`(N) :=
[K`n,`n : K`n ]

[KN,`n : KN ]
= [K`n,`n ∩KN : K`n ]

the adelic failure at N (related to `). Notice that both A`(N) and B`(N) are powers of `.

Example 3.2. It is clear that the `-adic failure A`(N) can be nontrivial, that is, different from 1. Suppose for example
that α = `β for some β ∈ E(K): then we have

K`n,`n = K`n(`
−nα) = K`n(`

−n+1β),

and the degree of this field over K`n is at most `2(n−1), so `2 | A`(N). In Example 4.4 we will show that the `-adic
failure can be non-trivial also when α is strongly `-indivisible.

We have to show the following:
(1) For every ` there is an explicit a` ∈ N such that A`(N) divides `a` for every N , and a` = 0 for almost all `.
(2) For every ` there is an explicit b` ∈ N such that B`(N) divides `b` for every N , and b` = 0 for almost all `.

4. THE `-ADIC FAILURE

In case ρ`∞ is surjective, the following result takes care of the `-adic failure:

Theorem 4.1 (Jones-Rouse, [1, Theorem 5.2]). Assume that ρ`∞ is surjective and that α is `-indivisible in E(K). If
` = 2 assume moreover that K2,2 6⊆ K4. Then A`(N) = 1 for every N .

When the `-adic torsion representation is not surjective and the point α is not necessarily indivisible, it is still
possible to bound the `-adic failure by “how much” the hypotheses of the Theorem fail.

In particular, a bound on the divisibility of the point α in the tower of `-power division field tells us that there exist
some non-trivial elements in V`n for n big enough.

Lemma 4.2. If α ∈ E(K) is not `d+1-divisible over K`∞ , then V`∞ contains a vector of valuation at most d.

Then, if H`n is big enough, we can use the action of H`n on V`n to move this element around and make V`n larger.

Lemma 4.3. Suppose that V`∞ contains a vector of valuation at most d and that H`n contains all matrices that are
congruent to the identity modulo `n. Then V`∞ contains `d+nZ2

` .

Idea of proof. Assume that v := `de1 ∈ V`∞ . Then for any g = I+`nM ∈ H`∞ we have V`∞ 3 gv−v = `n+dMe1.
Letting M vary we get all of `d+nZ2

` . �

In the proposition above we can take n = n`, so it remains to bound the divisibility of α in K`n . First of all, write
α = `d(α,K)β + T , where β ∈ E(K) is indivisible in E(K)/E(K)tors and T ∈ E(K) has order a power of `. We
call d(α,K) the `-divisibility parameter of α over K.

The point β may not be indivisible in E(K`n)/E(K`n)tors, so the `-divisibility of α may increase.

Example 4.4. Consider the elliptic curve E over Q given by the equation

y2 + y = x3 − 216x− 1861

with Cremona label 17739g1. We have E(Q) ∼= Z ⊕ Z/3Z, with a generator of the free part given by P =(
23769
400 ,

3529853
8000

)
, which is indivisible in E(Q)/E(Q)tors.

The 3-torsion field of E is given by Q(z), where z is any root of x6 + 3. Over this field the point

Q =

(
803

400
z4 − 416

400
z2 +

507

400
,
89133

8000
z4 − 199071

8000
z2 − 95323

8000

)
∈ E(Q(z))

is such that 3Q = P .

From the study of the cohomology groups H1(H`k , E[`n]) it follows that this phenomenon is also bounded by n`.

Proposition 4.5. If α = `d(α,K)β + T with β and T as above, then d(α,K`∞) 6 d(α,K) + n`.

It follows that that we can take a` = 4n` + 2d for all the finitely many primes such that the `-adic torsion repres-
entation is not surjective or d(α,K) 6= 0, and a` = 0 for all other primes.
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5. THE ADELIC FAILURE

Recall that the adelic failure is B`(N) = [K`n,`n ∩KN : K`n ], where ` = v`(N). Let R = N/`n and consider the
following diagram:

K`nR,`n

K`n,`n K`nR

L := K`n,`n ∩K`nR

K`n KR

F := K`n,`n ∩KR

T := K`n ∩KR

K

It is clear that B`(N) = [F : T ], so we want to bound this quantity.
The extension F | T is abelian, and if T = K one can - with a bit of work - conclude that [F : K] | `2n` . A result

of Campagna and Stevenhagen tells us that there is a finite and explicit set of primes S, depending only on E and K,
such that T = K holds for every ` 6∈ S.

For the finitely remaining primes, one sets K̃ =
∏
p∈SKp and repeats the argument: now we do have K̃`n ∩

K̃R = K̃, and [F̃ : T̃ ] divides [K̃ : K] · `2ñ` , where ñ` is the usual parameter for E/K̃. It is not hard to see that
ñ` 6 n` + v`([K̃ : K]).

If follows that one can take b` = 2n` + 3v`([K̃ : K]) for the finitely primes ` that DO NOT satisfy the following
conditions:

• ρ`∞ is surjective;
• ` ∈ S;
• α is `-indivisible in E(K)/E(K)tors;

and b` = 0 for all ` that satisfy all the conditions above.
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