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Algebraic Varieties

K any field, K algebraic closure.
o Affine varieties: V C K zero set of system of polynomial equations
Projective varieties: V C IP’"V zero set of homogeneous polynomials

Algebraic varieties: more general class, includes affine and projective

°
°
@ Topology: Zariski topology (closed sets are sub-varieties)
@ Morphisms: locally defined by ratios of polynomials

°

“Defined over K" if the polynomials involved have coefficients in K
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Algebraic Varieties - Examples

Affine space K" and projective space IP’"? (empty set of equations)
Linear subspaces (lines, hyperplanes...)

Compact Riemann surfaces

Complex submanifolds of CP” (Chow's theorem)
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The functor of points

V C K" algebraic variety over K

@ For any field extension L O K we can consider
V(L):{(Xl,...,Xn) eV ’Xl,...,X,, c L}

o If F D L then V(F) D V(L)
@ A morphism of K-varieties ¢ : V — W induces maps V(L) — W(L)

K=R
V: affine variety in C! defined by x> +1 =0
V(R) =0 and V(C) = {i,—i}
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The functor of points

Example

K=Q K=0Q

E: elliptic curve in Pé defined by y?z = x3 — xz?
E(Q)={(0:1:0),(0:0:1),(1:0:1),(—1:0:1)}
E(R):

154

0.5 4

-1.54

4
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Definition (1)
A group is a set G with:
@ An operation - : G x G — G such that a- (b-¢c) = (a- b) - c;

@ Ane € G suchthata-e=e-a=aforany a € G;

o Foreach a€ G, an element a1 € Gsuchthat a-al=a1l.a=e,
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Groups

Definition (2)
A group is a set G with maps

m:GxG— G e: {0} -G

such that the following diagrams commute

ExExa exe @S9

NN

GxG—— =G
m(a, m(b,c)) = m(m(a, b),c) m(e(),a)=a

i:G— G

Sebastiano Tronto Algebraic Groups and Field Extensions

2020-04-01

7/29



DEFINITION 1

DEFINITION 2




Groups in other categories

A topological group is a topological space G together continuous maps

m:GxG— G e: {0} -G i:G—=G

such that the following diagrams commute
6x6x62 . 6x6 -7

RN

GxG—"—=G
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Groups in other categories

A Lie group is a smooth manifold G with smooth maps

m:GxG— G e: {0} -G i:G—=G

such that the following diagrams commute
6x6x62 . 6x6 -7

RN

GxG—"—=G
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Algebraic Groups

An algebraic group is an algebraic variety G with morphisms

m:GxG— G e: {0} -G i:G—=G

such that the following diagrams commute
6x6x62 . 6x6 -7

RN

GxG—"—=G
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Examples of algebraic groups

Example

The general linear group of degree 2

a b —4
GL2—{<C d)EK |ad—bc;é0}

can be rewritten as

GLy = {(a, b,c,d,t) € K* | (ad — bc)t = 1}

It is an (affine) algebraic group with the usual matrix multiplication.
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Examples of algebraic groups

An elliptic curve over K is a projective curve defined by

y?z = x3 4 axz® + bZ® (a,be K, 4a°>+# —27b%)

It is a (projective) algebraic group:

v
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The “group functor” of points

G algebraic group over K, L O K field extension
o G(L)is a set

@ we have maps
mp . G(L) x G(L) — G(L), e :{0} — G(L), i:G(L)— G(L)

and the usual diagram commute

e Then G(L) is a group
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We can think of an algebraic group
over K as a family of groups
parametrized by the field
extensions of K.

Algebraic Groups and Field Extensions 2020-04-01 15 /29



Field extensions from algebraic groups

K field, K algebraic closure, G algebraic group over K

o If G is affine and P = (x1,...,x,) € G(K), we define

K(P):= K(x1,...,Xn)

o If G is projective and P = (xp : - -+ : xp) € G(K), assuming xo # 0

@ In both cases K(P) is an algebraic extension of K
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Field extensions from algebraic groups

More abstract definition:
@ There is an action of Gal(K | K) on G(K)
o Call Hp = {g € Gal(K | K) | g(P) = P}
o K" = {zeK|h(z)=z Yhe Hp)
e Define K(P) := K’
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Torsion fields

G commutative algebraic group over K, char K =0
@ For n > 1 consider G[n] = {P € G(K) | nP =0} = (Z/nZ)"
e K(GJn]) is called n-torsion field of G

@ The action of Gal(K | K) on G[n] gives a Galois representation
pn: Gal(K | K) — GLu(Z/nZ)

whose image is isomorphic to Gal(K(G[n]) | K)
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Torsion fields

f G=GCGn=K thenn=1and G[n]={Ce K" |¢"=1}.
K(Gm[n]) is the n-th cyclotomic extension of K.

Example

If G is an elliptic curve then n = 2.
If K is a number field and G has no CM, Serre's Open Image tells us that
the image of p, in GL2(Z/nZ) has index bounded independently of n.
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Kummer theory

G, K and n as before, fix Py € G(K) not torsion
e Consider 1Py = {Q € G(K) | nQ = Py}
e We call K(n~1Py) the n-division field of Py
e Fixing Qo € 1Py we get a bijection
n~1Py — G[n]
Q— Q- Qo

so K(n"*Pg) 2 K(GI[n])
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Kummer theory

@ We have a “representation”

kn: Gal(K | K(G[n])) — G[n] = (Z/nZ)"
g+ g(Qo) — Qo
whose image is Gal(K | K(G[n]))

o The Kummer extension K(n~1Pg) | K(G[n]) is “easy” to study
(abelian), but relies on understanding K(G[n]).
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Kummer theory

Example

EG =Gy, and Py € K*, then n~1Py is the set of all n-th roots of Py in
K, i.e. the roots of x" — Pj.

K(n=1Py) | K(G[n]) is a Kummer extension in the classical sense:

K(/Po, ¢a) | K(Gn)
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G commutative algebraic group over K, char K =0, n > 1, L = K(G[n])

Are there points Py € G(K) such that
@ There is no Q € G(K) with nQ = Py, but (Po & nG(K
@ Thereis Q € G(L) with nQ =Py 7 (Po € nG(L)

)

~—_ —
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An exact sequence

Let I := Gal(L | K). The exact sequence of -modules
0— G(L)[n] = G(L) 2 nG(L) — 0
induces a long exact sequence in group cohomology
0 —H°(I, G(L)[n]) — HO(T, G(L))—H°(T, nG(L))—~H (T, G(L)[n]) — -+
which we can rewrite as

0 — G(K)[n] = G(K) 3 G(K)NnG(L) > HY(T, G[n]) — - --
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An exact sequence

Using the fact that G(K)/G(K)[n] = nG(K) we have
0 = nG(K) — G(K) N nG(L) % HM(T, G[n]) — ---

and we conclude that

G(K) N nG(L)

NGO HY(Gal(L | K), G[n])
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A partial answer

Partial answer

If HY(Gal(L | K), G[n]) = 0 then “Question” has negative answer.
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A counterexample

Let K=Q, n= p a prime and G an elliptic curve.
Theorem (Lawson, Wuthrich (2015))

If p & {3,5,11} then H(Gal(K(G[n]) | K), G[n])) = 0.
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A counterexample

The elliptic curve over Q
E: y? +y=x3—216x —1861 (Cremona 17739g1)

Has Q(E[3]) = L := Q[x]/(x3 + 54x — 18). There is a point

23760 3520853
Py =
0 ( 400’ 8000 >€ EQ

such that
@ Thereis no Q € E(K) with 3Q = Py, but
@ Thereis Q € E(L) with nQ = Py.
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Thank you for your attention!
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