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Field Extensions

Let K be any field (e.g. Q, R, F2...)

A field L ⊇ K is called an extension of K (notation: L | K )

If L | K then L is a K -vector space ([L : K ] := dimK L)

Examples: [C : R] = 2 (basis {1, i}) and [R : Q] = +∞
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Field Extensions

If L | K and a1, . . . , an ∈ L, we denote by K (a1, . . . , an) the
smallest subfield of L containing K and a1, . . . , an.

Example (K = Q, L = R, a1 =
√

3):

Q(
√

3) =
{
f (
√

3) | f (X ) ∈ Q[X ]
}

=

=
{
a + b

√
3 | a, b ∈ Q

}
⊆ R

Application: find integer solutions of x2 − 3y2 = 1
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Galois Theory

Figure: Évariste Galois
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Galois Theory

Let L | K , assume [L : K ] finite.

Separability: L | K is separable if the minimal polynomials of
elements of L have distinct roots.
Example: if charK = 0 or K is finite L | K is separable.

Normality: L | K is normal if every irreducible f (x) ∈ K [x ]
that has a root in L has all its roots in L.
Example: splitting fields.
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Galois Theory

Let L | K be normal and separable.

The Galois group of L | K is

Gal(L | K ) := {σ ∈ Aut(L) | σ(x) = x ∀ x ∈ K}

# Gal(L | K ) = [L : K ]

Galois correspondence

{extensions K ⊆ F ⊆ L} 1:1←→ {subgroups H ≤ Gal(L | K )}
F 7−→ Gal(L | F )

fixed field of H ←−p H
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Elliptic Curves
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Elliptic Curves

An elliptic curve over a field K is defined by an equation

Y 2 = X 3 + AX + B A,B ∈ K , 4A3 6= −27B2

+ a point at infinity o.

For any L | K , we can consider the set of L-points

E (L) = {(x , y) ∈ L2 | y2 = x3 + Ax + B} ∪ {o}

There is an operation on E (L) such that (E (L),+) is a group

Applications in Cryptography
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Field Extensions from Elliptic Curves

Fix an elliptic curve E over K ; let K be a separable closure of K .

For points P1 = (x1, y1), . . . ,Pn = (xn, yn) ∈ E (K ) let

K (P1, . . . ,Pn) := K (x1, y1, . . . , xn, yn)

which is an extension of K .

Nicer definition: K (P1, . . . ,Pn) is the subfield of K fixed by{
σ ∈ Gal(K | K ) | σ(Pi ) = Pi for i = 1, . . . , n

}
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Torsion Fields

Assume charK - n.

Let {P1, . . . ,P2n} = E (K )[n] be the points of order n.
K (E [n]) = K (P1, . . . ,P2n) is called n-th torsion field of E .
It is a normal and separable extension of K .

The action of Gal(K (E [n]) | K ) on E [n] ∼= Z/nZ× Z/nZ
gives a Galois representation

ρn : Gal(K (E [n]) | K ) ↪→ Aut(E [n]) ∼= GL2(Z/nZ)
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Kummer Theory

Figure: Ernst Kummer
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Classic Kummer Theory

Assume charK - n, let a ∈ K× not a root of unity.

Consider the splitting field L of X n − a (adjoin to K all
possible n-th roots of a).

L contains the n-th cyclotomic extension K (ζn).

L | K is normal and separable.

One can e.g. compute the degree [L : K (ζn)].
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Kummer Theory for Elliptic Curves

E elliptic curve over K , charK - n, let P ∈ E (K ) not torsion.

There are 2n points Q1, . . . ,Q2n ∈ E (K ) such that nQi = P
(notation: n−1P := {Q1, . . . ,Q2n}.)
Consider L = K (Q1, . . . ,Q2n).

L | K is normal and separable.

L contains the n-th torsion field K (E [n]).
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Kummer Theory for Elliptic Curves

Let K be a finite extension of Q and P ∈ E (K ) of infinite order.
Assume that E does not have complex multiplication over K .

Theorem (joint with Davide Lombardo)

There is an explicit constant C, depending only on P and on the
torsion Galois representations associated to E such that

n2

[K (n−1P) : K (E [n])]
divides C

for all n ≥ 1.
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Thank you for your attention

Sebastiano Tronto Field Extensions and Elliptic Curves


