Kummer Theory for Elliptic Curves

Sebastiano Tronto

Luxembourg/Leiden

2019-11-29

Sebastiano Tronto Kummer Theory for Elliptic Curves

伺 ト イヨト イヨト

• Consider the splitting field L of $X^N - a$

→ < ∃ →</p>

- Consider the splitting field L of $X^N a$
- L contains the N-th cyclotomic extension $K(\zeta_N)$

- Consider the splitting field L of $X^N a$
- L contains the N-th cyclotomic extension $K(\zeta_N)$
- $L \mid K$ and $L \mid K(\zeta_N)$ are Galois

- Consider the splitting field L of $X^N a$
- L contains the N-th cyclotomic extension $K(\zeta_N)$
- $L \mid K$ and $L \mid K(\zeta_N)$ are Galois
- These extensions can be studied explicitly

The degree $[L : K(\zeta_N)]$ is very close to N.

★ Ξ →

• Properties of $K(\zeta_N) \mid K$ (does K intersect $\mathbb{Q}(\zeta_N)$?)

- Properties of $K(\zeta_N) \mid K$ (does K intersect $\mathbb{Q}(\zeta_N)$?)
- Properties of *a* (is it an *N*-th power?)

- Properties of $K(\zeta_N) \mid K$ (does K intersect $\mathbb{Q}(\zeta_N)$?)
- Properties of *a* (is it an *N*-th power?)
- Relations between $\sqrt[N]{a}$ and ζ_M

- Properties of $K(\zeta_N) \mid K$ (does K intersect $\mathbb{Q}(\zeta_N)$?)
- Properties of a (is it an N-th power?)
- Relations between $\sqrt[N]{a}$ and ζ_M

If $K = \mathbb{Q}$ an efficient implementation exists (no splitting field computation required).

E elliptic curve over a number field K.

→ < Ξ → <</p>

E elliptic curve over a number field *K*. $P \in E(K)$ not torsion ($NP \neq 0$ for every $N \ge 1$).

▶ < ∃ ▶</p>

- E elliptic curve over a number field K.
- $P \in E(K)$ not torsion ($NP \neq 0$ for every $N \geq 1$).
 - There are N² points Q₁,..., Q_{N²} ∈ E(K̄) such that NQ_i = P (notation: N⁻¹P := {Q₁,..., Q_{N²}})

- E elliptic curve over a number field K.
- $P \in E(K)$ not torsion ($NP \neq 0$ for every $N \geq 1$).
 - There are N² points Q₁,..., Q_{N²} ∈ E(K̄) such that NQ_i = P (notation: N⁻¹P := {Q₁,..., Q_{N²}})
 - Consider $L = K(N^{-1}P)$

- E elliptic curve over a number field K.
- $P \in E(K)$ not torsion ($NP \neq 0$ for every $N \geq 1$).
 - There are N² points Q₁,..., Q_{N²} ∈ E(K̄) such that NQ_i = P (notation: N⁻¹P := {Q₁,..., Q_{N²}})
 - Consider $L = K(N^{-1}P)$
 - L contains the N-th torsion field K(E[N])

- E elliptic curve over a number field K.
- $P \in E(K)$ not torsion ($NP \neq 0$ for every $N \geq 1$).
 - There are N² points Q₁,..., Q_{N²} ∈ E(K̄) such that NQ_i = P (notation: N⁻¹P := {Q₁,..., Q_{N²}})
 - Consider $L = K(N^{-1}P)$
 - L contains the N-th torsion field K(E[N])
 - $L \mid K$ and $L \mid K(E[N])$ are Galois

Classical	Elliptic Curves
G _m	E
roots of unity $\zeta_N \in \mu_N$	torsion points $T \in E[N]$
$K(\zeta_N)$	K(E[N])
$a \in K^{\times}$ not root of unity	$P \in E(K)$ not torsion
$\{b\in \overline{K}^{\times}\mid b^{N}=a\}$	$\{Q \in E(\overline{K}) \mid NQ = P\}$
$K(\sqrt[N]{a},\zeta_N)$	$K(N^{-1}P)$
$[K(\sqrt[N]{a},\zeta_N):K(\zeta_N)]\sim N$	$[K(N^{-1}P):K(E[N])] \sim N^2$

Sebastiano Tronto Kummer Theory for Elliptic Curves

▲ 同 ▶ → 目 ▶

æ

Theorem (D. Lombardo - S. T. (2019))

Assume that $End_{\mathcal{K}}(E) = \mathbb{Z}$. There is an explicit constant C, depending only on P and on the torsion Galois representations associated with E such that

$$\frac{N^2}{[K(N^{-1}P):K(E[N])]}$$

for all N > 1.

divides

C

▶ ∢ ≣ ▶

Theorem (D. Lombardo - S. T. (2019))

Assume that $End_{\mathcal{K}}(E) = \mathbb{Z}$. There is an explicit constant *C*, depending only on *P* and on the torsion Galois representations associated with *E* such that

$$\frac{N^2}{[K(N^{-1}P):K(E[N])]}$$

for all $N \geq 1$.

Already known with a non-explicit constant.

divides

C

Elementary field theory gives

$$\frac{N^2}{[\mathcal{K}(N^{-1}P):\mathcal{K}(\mathcal{E}[N])]} =$$

$$= \prod_{\substack{\ell \mid N \\ \ell \text{ prime}}} \underbrace{\frac{\ell^{2n_\ell}}{[\mathcal{K}(\ell^{-n_\ell}P):\mathcal{K}(\mathcal{E}[\ell^{n_\ell}])]}}_{A_\ell(N)} \cdot \underbrace{[\mathcal{K}(\ell^{-n_\ell}P) \cap \mathcal{K}(\mathcal{E}[N]):\mathcal{K}(\mathcal{E}[\ell^{n_\ell}])]}_{B_\ell(N)}$$

where $n_{\ell} = v_{\ell}(N)$.

Elementary field theory gives

$$\frac{N^2}{[\mathcal{K}(N^{-1}P):\mathcal{K}(\mathcal{E}[N])]} =$$

$$= \prod_{\substack{\ell \mid N \\ \ell \text{ prime}}} \underbrace{\frac{\ell^{2n_\ell}}{[\mathcal{K}(\ell^{-n_\ell}P):\mathcal{K}(\mathcal{E}[\ell^{n_\ell}])]}}_{\mathcal{A}_{\ell}(N)} \cdot \underbrace{[\mathcal{K}(\ell^{-n_\ell}P) \cap \mathcal{K}(\mathcal{E}[N]):\mathcal{K}(\mathcal{E}[\ell^{n_\ell}])]}_{\mathcal{B}_{\ell}(N)}$$

where $n_{\ell} = v_{\ell}(N)$. We call $A_{\ell}(N)$ the ℓ -adic failure and $B_{\ell}(N)$ the adelic failure.

Sebastiano Tronto Kummer Theory for Elliptic Curves

æ

æ

• (1) • (1) • (1)

• Show that A_{ℓ} is bounded as a function of N

• • = • • = •

э

- Show that A_ℓ is bounded as a function of N
- $A_{\ell} = 1$ for almost all primes

→ < ∃ →</p>

- Show that A_ℓ is bounded as a function of N
- $A_\ell = 1$ for almost all primes
- Same for B_ℓ

→ < ∃ →</p>

- Show that A_ℓ is bounded as a function of N
- $A_\ell = 1$ for almost all primes
- Same for B_ℓ
- Everything explicitly!

Assume that E has no CM.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Write $P = \ell^{d_{\ell}}Q + T$ in E(K), with T torsion and d_{ℓ} maximal

• Write $P = \ell^{d_\ell} Q + T$ in E(K), with T torsion and d_ℓ maximal

Theorem (J. Rouse, N. Jones (2007))

If $d_{\ell} = 0$ and the ℓ -adic Galois representation associated with E is surjective, (+ extra condition for $\ell = 2$) then $A_{\ell}(N) = 1$ for every N > 1.

• Write $P = \ell^{d_\ell} Q + T$ in E(K), with T torsion and d_ℓ maximal

Theorem (J. Rouse, N. Jones (2007))

If $d_{\ell} = 0$ and the ℓ -adic Galois representation associated with E is surjective, (+ extra condition for $\ell = 2$) then $A_{\ell}(N) = 1$ for every N > 1.

• Serre's open image theorem \implies finitely many primes left

Proof idea - ℓ -adic failure (an example)

Problem: d_{ℓ} may increase when we work over $K(E[\ell^n])$

Proof idea - ℓ -adic failure (an example)

Problem: d_{ℓ} may increase when we work over $K(E[\ell^n])$

Example
The curve
$E/\mathbb{Q}:$ $y^2 + y = x^3 - 216x - 1861$ (Cremona 17739g1)
has a point $P = \left(rac{23769}{400}, rac{3529853}{8000} ight) \in E(\mathbb{Q})$
with $d_3 = 0$.

Proof idea - ℓ -adic failure (an example)

Problem: d_{ℓ} may increase when we work over $K(E[\ell^n])$

Example	
The curve	
$E/\mathbb{Q}:$ $y^2 + y = x^3 - 216x - 1861$ (Cremona 17739g1)	
has a point $P = \left(rac{23769}{400}, rac{3529853}{8000} ight) \in E(\mathbb{Q})$	
with $d_3 = 0$. However, there is a point $Q \in \mathbb{Q}(E[3])$ such that $P = 3Q$.	

Using Galois cohomology, we bound A_{ℓ} in terms of:

- the integer d_ℓ
- "how much" ρ_{ℓ^∞} is not surjective

Using Galois cohomology, we bound A_{ℓ} in terms of:

- the integer d_{ℓ}
- "how much" ρ_{ℓ^∞} is not surjective

Proposition

There is an explicit integer c_{ℓ} , depending only on the ℓ -adic Galois representation associated with E, such that $A_{\ell}(N)$ divides $\ell^{4c_{\ell}+2d_{\ell}}$ for every N > 1.

Let $n_{\ell} = v_{\ell}(N)$ and $R = N/\ell^{n_{\ell}}$.

▲御▶ ▲臣▶ ▲臣▶ -

æ

Let $n_{\ell} = v_{\ell}(N)$ and $R = N/\ell^{n_{\ell}}$. Recall $B_{\ell}(N) = [K(\ell^{-n_{\ell}}P) \cap K(E[N]) : K(E[\ell^{n_{\ell}}])]$.

Let
$$n_{\ell} = v_{\ell}(N)$$
 and $R = N/\ell^{n_{\ell}}$.
Recall $B_{\ell}(N) = [K(\ell^{-n_{\ell}}P) \cap K(E[N]) : K(E[\ell^{n_{\ell}}])]$.

• One can show that

$$B_{\ell}(N) = [\underbrace{K(\ell^{-n_{\ell}}P) \cap K(E[R])}_{F} : \underbrace{K(E[\ell^{n_{\ell}}]) \cap K(E[R])}_{T}]$$

æ

伺 ト イヨト イヨト

Let
$$n_{\ell} = v_{\ell}(N)$$
 and $R = N/\ell^{n_{\ell}}$.
Recall $B_{\ell}(N) = [K(\ell^{-n_{\ell}}P) \cap K(E[N]) : K(E[\ell^{n_{\ell}}])]$.

• One can show that

$$B_{\ell}(N) = [\underbrace{K(\ell^{-n_{\ell}}P) \cap K(E[R])}_{F} : \underbrace{K(E[\ell^{n_{\ell}}]) \cap K(E[R])}_{T}]$$

• If T = K then $B_{\ell}(N) = 1$

伺 ト イヨト イヨト

There is a finite and explicit set of primes S, depending only on E, such that if $\ell \notin S$, then T = K.

There is a finite and explicit set of primes S, depending only on E, such that if $\ell \notin S$, then T = K.

For all other primes:

There is a finite and explicit set of primes S, depending only on E, such that if $\ell \notin S$, then T = K.

For all other primes:

• There is a finite extension $\tilde{K} \mid K$, depending only on S, such that working over \tilde{K} we have T = K

There is a finite and explicit set of primes S, depending only on E, such that if $\ell \notin S$, then T = K.

For all other primes:

- There is a finite extension $\tilde{K} \mid K$, depending only on S, such that working over \tilde{K} we have T = K
- We have the bound

 $B_{\ell}(N) \mid \ell^{2c_{\ell}+3v_{\ell}([\tilde{K}:K])}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- **(**) Split the "failure of maximality" in ℓ -adic and adelic failures
- For most primes things are nice and $A_{\ell} = B_{\ell} = 1$ (direct application of other people's results)

- **(**) Split the "failure of maximality" in ℓ -adic and adelic failures
- For most primes things are nice and $A_{\ell} = B_{\ell} = 1$ (direct application of other people's results)
- For other primes, things don't go too bad (some extra work to do)

.

Theorem (D. Lombardo - S. T. (2019))

Assume that $End_{\mathcal{K}}(E) = \mathbb{Z}$. There is an explicit constant *C*, depending only on *P* and on the torsion Galois representations associated with *E* such that

$$\frac{N^2}{[K(N^{-1}P):K(E[N])]}$$

for all $N \geq 1$.

Already known with a non-explicit constant.

divides

C

• Uniform bounds (done over \mathbb{Q})

æ

э

• (1) • (1) • (1)

- Uniform bounds (done over \mathbb{Q})
- More points (work in progress)

- Uniform bounds (done over \mathbb{Q})
- More points (work in progress)
- CM curves, abelian varieties

- Uniform bounds (done over \mathbb{Q})
- More points (work in progress)
- CM curves, abelian varieties
- More explicit/algorithmic results

Thank you for your attention!

Sebastiano Tronto Kummer Theory for Elliptic Curves