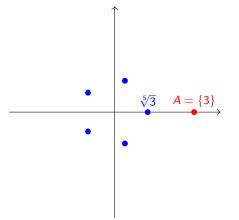
Kummer theory for commutative algebraic groups

Sebastiano Tronto

6 September 2022

Kummer theory

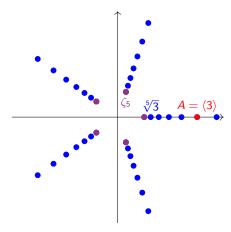


• K number field, \overline{K} algebraic closure

•
$$A \subseteq K^{\times}$$
, $\sqrt[n]{A} = \{x \in \overline{K} \mid x^n \in A\}$

- Kummer extension $K(\sqrt[n]{A})$
- Galois over K, abelian over $K(\zeta_n)$

Kummer theory



• K number field, \overline{K} algebraic closure

•
$$A \leq K^{\times}$$
, $\sqrt[n]{A} = \{x \in \overline{K} \mid x^n \in A\}$

- Kummer extension $K(\sqrt[n]{A})$
- Galois over K, abelian over $K(\zeta_n)$

Kummer degrees

 $\operatorname{rk}_{\mathbb{Z}} A = r$, torsion-free

- Degrees $[K(\sqrt[n]{A}) : K(\zeta_n)]$: applications in *density problems*
- Always divide n^r
- $n^r/[K(\sqrt[n]{A}:K(\zeta_n)]$ is bounded

Explicit computation of Kummer degrees

sage: G = [-2^3, (2/3)^27, -1/5] sage: TotalKummerFallure(G) M_0 = 120 N_0 = 216																	
	1	1	2	3	4	5	6	8	10	12	15	20	24	30	40	60	120
-	- 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	- L	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	- İ-	1	1	1	1	1	2	2	1	2	1	2	4	2	4	4	8
3		9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
4		1	1	1	1	1	1	2	1	2	1	2	4	1	4	4	8
6		9	9	9	9	9	18	18	9	18	9	18	36	18	36	36	72
8		2	2	2	2	2	2	2	2	2	2	2	4	2	4	2	8
9		27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
12	- I	9	9	9	9	9	9	18	9	18	9	18	36	9	36	36	72
18		27	27	27	27	27	54	54	27	54	27	54	108	54	108	108	216
24	- I	18	18	18	18	18	18	18	18	18	18	18	36	18	36	18	72
27		81	81	81	81	81	81	81	81	81	81	81	81	81	81	81	81
36		27	27	27	27	27	27	54	27	54	27	54	108	27	108	108	216
54		81	81	81	81	81	162	162	81	162	81	162	324	162	324	324	648
72		54	54	54	54	54	54	54	54	54	54	54	108	54	108	54	216
108		81	81	81	81	81	81	162	81	162	81	162	324	81	324	324	648
216		162	162	162	162	162	162	162	162	162	162	162	324	162	324	162	648

Kummer theory for algebraic groups

G commutative algebraic group over K number field

- $A \leq G(K)$, $n^{-1}A = \{P \in G(\overline{K}) \mid nP \in A\}$
- "Kummer extension" $K(n^{-1}A)$
- Galois over K, abelian over $K(G(\overline{K})[n])$
- Classical Kummer theory when $G = \mathbb{G}_m$

Classical results

Theorem (Ribet, 1979)

Let G be the extension of an abelian variety of dimension d by a torus of dimension e over a number field K. Let $P_1, \ldots, P_r \in G(K)$ be linearly independent over the ring $End_K(G)$. Then there exists a constant C, depending only on G and on P_1, \ldots, P_r , such that for every positive integer n

$$\frac{n^{r(2d+e)}}{[K(n^{-1}\langle P_1, \dots, P_r \rangle) : K(G(\overline{K})[n])]} \quad divides \quad C$$

Towards effective results for elliptic curves

Theorem (Jones, Rouse - 2010)

Let E be a non-CM elliptic curve over a number field K. Let $P \in E(K)$ be a non-torsion point and let ℓ be a prime different from 2. If $P \notin \ell E(K)$ and the ℓ -adic Galois representation associated with E is surjective, then for every integer $k \ge 0$

$$[K(\ell^{-k}P):K(E(\overline{K})[\ell^k])] = \ell^{2k}$$

Towards effective results for elliptic curves

- Idea: "nice" Galois representation \implies "nice" Kummer part
- My task: "this bad" ⇒ "f(this) bad"
- Do this for every n

Example: curve 17739g1

Consider

$$E: y^2 + y = x^3 - 216 - 1861, \qquad P = \left(\frac{23769}{400}, \frac{3529853}{8000}\right)$$

•
$$P \in E(\mathbb{Q})$$
 and $P
ot\in 3E(\mathbb{Q})$

- The mod 3 Galois representation of E is not surjective
- $P \in 3E(\mathbb{Q}(E[3]))$

Effective results for elliptic curves

Theorem (Lombardo, T. - 2019)

Let E be an elliptic curve over a number field K with $End_{K}(E) = \mathbb{Z}$. Let $P \in E(K)$ be a non-torsion point. There is an explicit constant C, depending only on P, E, K and the ℓ -adic torsion representations associated with E for all primes ℓ , such that for all positive integers n

$$\frac{n^2}{[K(n^{-k}P):K(E(\overline{K})[n])]} \quad divides \quad C$$

Effective results for elliptic curves

Theorem (Lombardo, T. - 2021)

Let E be an elliptic curve over \mathbb{Q} and let $P \in E(\mathbb{Q})$ be a non-torsion point whose image in $E(\mathbb{Q})/E(\mathbb{Q})_{tors}$ is not divisible by any positive integer n. Then for every positive integer n the ratio

$$\frac{n^2}{[K(n^{-k}P):K(E(\overline{K})[n])]}$$

divides

$$\mathcal{C}_{\textit{non-CM}} = 2^{28} \times 3^{18} \times 5^8 \times 7^7 \times 11^5 \times 13 \times 17 \times 37$$

if E does not have complex multiplication and

$$C_{CM} = 2^7 \times 3^5 \times 7 \times 11 \times 19 \times 43 \times 67 \times 163$$

if E has complex multiplication.

Related objects

- $\mathcal{G}_{\ell^\infty}$ = image of ℓ -adic Galois representation
 - Exponenent of cohomology group

$$H^1\left(\mathsf{Gal}(K(E(\overline{K})_{\mathsf{tors}}) \mid K), E(K)_{\mathsf{tors}}\right)$$

• Index of the $\mathbb{Z}_\ell\text{-algebra}$ generated by ${\it G}_{\ell^\infty},$ for every ℓ

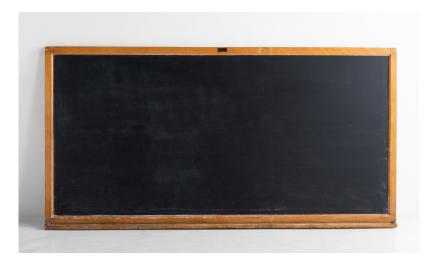
 $[\mathsf{Mat}_{2\times 2}(\mathbb{Z}_\ell):\mathbb{Z}_\ell(\mathit{G}_{\ell^\infty})]$

Complex multiplication

- Independent work by Javan Peykar (2021)
- Some assumptions on $End_{\mathcal{K}}(E)$: Dedekind domain
- Main idea: work with A and $n^{-1}A$ as $End_{K}(E)$ -modules

Question Can we do this more generally?

Blackboard time!



Elliptic curves - unified theory

- E any elliptic curve over a number field K
- $R = \operatorname{End}_{K}(E)$ is either \mathbb{Z} or and order \mathcal{O} in a number field F
- $A \subseteq E(K)$ any *R*-submodule
- *E*_{tors} is an injective *R*-module (Lenstra, 1996)

Elliptic curves - unified theory

Since E(K) has finite rank, there exists d > 0 such that

$$d \cdot \{P \in E(K) + E_{tors} \mid nP \in A + E_{tors} \text{ for some } n \in \mathbb{Z}_{\geq 1}\}$$

 $\subseteq A + E_{tors}$

- By (Lombardo, T 2019), there exists n > 0 such that $n \cdot H^1 \left(\text{Gal}(K(E(\overline{K})_{\text{tors}}) \mid K), E(K)_{\text{tors}} \right) = 0$
- By (Lombardo, T 2019), there exists m > 0 such that

 $m \cdot \mathbb{Z}(\operatorname{Im}(\tau)) \supseteq \operatorname{End}_R(E_{\operatorname{tors}})$

Elliptic curves - main theorem

Theorem (T. - 2021)

Let E be an elliptic curve over a number field K. Let $A \subseteq E(K)$ be an End_K(E)-submodule of rank r. There is an explicit constant C, depending only on A, E, K and the ℓ -adic torsion representations associated with E for all primes ℓ , such that for all positive integers n

$$\frac{n^{2r}}{[K(n^{-k}A):K(E(\overline{K})[n])]} \quad divides \quad C$$